Cho tam giác vuông ABC tại A và BD là phân giác trong của góc B \(\left(D\in AC\right)\). Biết BD = 7cm, DC = 15 cm. Khi đó AD = ...
Cho tam giác ABC vuông tại A và BD là phân giác trong của góc B (D thuoc AC). Biết DB= 7cm, DC= 15cm, khi đó AD=... cm. ?
Bài 3: Cho tam giác ABC vuông tại A (AB<AC), kẻ tia phân giác BD của góc B ( D thuộc AC). Qua A vẽ đường thẳng vuông góc với BD, đường thẳng đó cắt BD và BC lần lượt tại I và E
a) CM: tam giác ABI = tam giác EBI
b) CM: tam giác BED vuông
c) So sanh AD va DC
cho tam giác abc vuông tại b, phân giác ad (d thuộc bc). Qua d kẻ đường thẳng vuông góc với ac tại f.
a, tính bc biết ab=3cm,ac=5cm
b, CM:tam giác bad= tam giác fad
c, CM: ad là trung trực của bf; bd<dc
Cho tam giác ABC cân tại A phân giác trong BD,BC=10cm,AB bằng 15 cm
A,Tính AD,DC
B,đường phân giác của góc B của tâm giác ABC cắt đường thẳng AC tại D tính DC
EZ thôi,vài đường cơ bản;gộp lại cho nó máu ! À mà tính BD chứ nhỉ ??
Kẻ CE là phân giác góc C cắt BD tại E
Đặt EC=x thì BE=x;đặt ED=y
Áp dụng tính chất đường phân giác ta có:
\(\frac{DA}{DC}=\frac{AB}{BC}=\frac{15}{10}=\frac{3}{2}\left(cm\right)\) khi đó \(DA=3a;DC=2a\)
Ta có:\(15=AC=DA+DC=3a+2a=5a\Rightarrow a=3\)
\(\Rightarrow DA=9;DC=6\)
Dễ thấy \(\Delta EDC~\Delta CDB\left(g.g\right)\Rightarrow\frac{ED}{CD}=\frac{DC}{DB}=\frac{EC}{CB}\)
hay \(\frac{y}{6}=\frac{6}{BD}=\frac{x}{10}=\frac{x+y}{10+6}=\frac{x+y}{16}=\frac{BD}{16}\)
\(\Rightarrow BD^2=96\Rightarrow BD=\sqrt{96}\) số khá xấu,ko bt có nhầm lẫn đâu chăng ??
cho tam giác ABC vuông tại A, có đường phân giác của góc B cắt AC tại D, biết BD=7cm, CD=15cm. Tính AD
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b, Xét Δ ABD và Δ EBD, có :
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))
\(\widehat{BAD}=\widehat{BED}=90^o\)
BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)
=> AB = AE
Xét Δ ABE, có :
AB = AE (cmt)
=> Δ ABE cân tại E
Ta có :
Δ ABE cân tại E
BD là tia phân giác của \(\widehat{ABE}\))
=> BD là đường trung trực của AE
c, Ta có : Δ ABD = Δ EBD (cmt)
=> AD = ED
Trong Δ CED, cạnh huyền DC là cạnh lớn nhất
=> ED < DC
Mà AD = ED (cmt)
=> AD < DC
Cho ABC cân tại A (góc A nhỏ hơn 900). Kẻ BD vuông góc với AC (D thuộc AC), kẻ CE vuông góc với AB (E thuộc AB). a. CMR: AD = AE b. Gọi I là giao điểm của BD và CE. CMR: AI là tia phân giác của góc A c. Tính độ dài BC biết AD = 7cm, DC = 1cm
bạn ơi bạn có nhầm đề không sao góc A < 900??? Bạn xem lại đề nhé
Ý bạn ấy nói là A nhỏ hơn 90 độ ý câu !!!
Ầy bạn tra chtt cx cs mà
a) +) Xét \(\Delta\) ABC cân tại A
=> AB = AC ( tính chất tam giác cân)
+) Xét \(\Delta\)ABD vuông tại D và \(\Delta\)ACE vuông tại E có
AB = AC ( cmt)
\(\widehat{BAC}\) : góc chung
=> \(\Delta\)ABD = \(\Delta\) ACE (ch-gn)
=> AD = AE ( 2 cạnh tương ứng)
b) Xét \(\Delta\)AEI vuông tại E và \(\Delta\)ADI vuông tại D có
AI : cạnh chung
AE = AD (cmt)
=> \(\Delta\)AEI = \(\Delta\)ADI (ch-cgv)
=> \(\widehat{EAI}=\widehat{DAI}\) ( 2 góc tương ứng)
Mà AI nằm trong tam giác ABC
=> AI là phân giác của \(\widehat{BAC}\)
c) +) Ta có điểm D thuộc AC (gt)
=> AD + DC = AC
=> AC = 7 + 1 = 8 (cm)
Mà AB = AC ( cmt)
=> AB = AC = 8 (cm)
Xét \(\Delta\) ABD vuông tại D
\(\Rightarrow AB^2=AD^2+BD^2\) ( định lí Py-ta-go)
\(\Rightarrow BD^2=AB^2+AD^2\)
\(\Rightarrow AD^2=BD^2-AB^2\)
\(\Rightarrow AD^2=8^2-1^2\)
\(\Rightarrow AD^2=64-1=63\)
\(\Rightarrow\)\(AD=\sqrt{63}\) ( cm) ( do AD > 0 )
+) Xét \(\Delta\)BDC vuông tại D
\(\Rightarrow BC^2=BD^2+DC^2\) ( định lí Py-ta-go)
Số quá xấu ~~~ tự làm nốt ~~
Éo hiểu lm sai or đề sai !!
Học tốt
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
cho tam giác abc vuông tại a đường cao ah , biết ab=15cm , ac=20cm a) cm tam giác hba đồng dạng tam giác abc . tam giác hac đồng dạng tam giác abc . b)tính ah,bh,ch . c) gọi bd là tia phân giác của góc abc . tính ad,dc . d)gọi e,f là chân đường vuông góc kẻ từ h xuống ad và ac . tứ giác aehf là hình gì . e)chứng minh ae.ab=af.ac
Vẽ dùm mình cái hình và phần e
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)
Do đó: AD=7,5cm; CD=12,5cm