(a+b)\(^2\).(a+b)
(a-b)\(^2\).(a-b)
Giúp emmm
rút gọn biểu thức
a, x(x+4)(x-4) - (x2+1) - (x2-1)
b, ( y - 3 ) ( y + 3 ) ( y2 + 9 ) - ( y2 + 2 ) ( y2 - 2 )
c, ( a+b+c )2 + ( b+c-a )2 ( c-a-b )2 + ( a-b+c )2
d, ( a+b-c )2 + ( a-c )2 - 2ab - 2bc
giúp emmm
\(a,=x^3-16x-x^2-1-x^2+1=x^3-2x^2-16x\\ b,=y^4-81-y^4+4=-77\\ d,=a^2+b^2+c^2+2ab-2bc-2ac+a^2-2ac+c^2-2ab-2ac\\ =2a^2+b^2+2c^2-2bc-6ac\)
Tìm x biết
a, 2x2 - 4x = 0
b, x . ( x+5 ) - 3 . ( x+5 ) = 0
c, ( x - 4 ) = 2 . ( x - 4 )
giúp emmm
a) \(2x^2-4x=0\)
\(2x\left(x-2\right)=0\)
TH1:2x=0⇒x=0
TH2:x-2=0⇒x=2
\(a,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow x-4=0\Leftrightarrow x=4\)
2x(x - 2) = 0
2x = 0 hoặc x - 2 = 0
x = 0 hoặc x = 2
(x - 3)(x + 5) = 0
x - 3 = 0 hoặc x + 5 = 0
x = 3 hoặc x = -5
(x - 4)2 = 0
x = 4
tính và so sánh; A= (3 +5)2 và B=32+ 582
C =(3+5) và D=33+53
MN GIẢI NHANH GIÚP EMMM
A=(3+5)2=82=64; B=32+582=9+3364=3373
=>A<B
C=(3+5)=8: D=33+53=27+125=152
=>C<D
Đề: giải các phương trình sau (gợi ý: đặc điểm phủ là đa thức)
a) 9x^4+6x^2+1=0
b) 2x^4+5x^2+2=0
c) 2x^4 - 20x+18=0
d) (x^2+5x)^2-2(x^2+5x)-24=0
Giải hộ em gấp nha mọi người, sắp hết hạn nộp bài, cíu emmm Huhu.
a) Ta có: \(9x^4+6x^2+1=0\)
\(\Leftrightarrow\left(3x^2\right)^2+2\cdot3x^2\cdot1+1^2=0\)
\(\Leftrightarrow\left(3x^2+1\right)^2=0\)
\(\Leftrightarrow3x^2+1=0\)
\(\Leftrightarrow3x^2=-1\)(vô lý)
Vậy: x∈∅
b) Ta có: \(2x^4+5x^2+2=0\)
\(\Leftrightarrow2x^4+4x^2+x^2+2=0\)
\(\Leftrightarrow2x^2\left(x^2+2\right)+\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(2x^2+1\right)=0\)(1)
Ta có: \(x^2+2\ge2>0\forall x\)(2)
Ta có: \(2x^2\ge0\forall x\)
⇒\(2x^2+1\ge1>0\forall x\)(3)
Từ (1), (2) và (3) suy ra x∈∅
Vậy: x∈∅
a, 9x4 + 6x2 + 1 = 0
\(\Leftrightarrow\) (3x2 + 1)2 = 0
\(\Leftrightarrow\) 3x2 + 1 = 0
\(\Leftrightarrow\) 3x2 = -1
\(\Leftrightarrow\) Ta có: 3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) Phương trình vô nghiệm
Vậy S = \(\varnothing\)
b, 2x4 + 5x2 + 2 = 0
\(\Leftrightarrow\) 2x4 + 4x2 + x2 + 2 = 0
\(\Leftrightarrow\) 2x2(x2 + 2) + (x2 + 2) = 0
\(\Leftrightarrow\) (x2 + 2)(2x2 + 1) = 0
Ta có: x2 \(\ge\) 0 và 2x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) Phương trình vô nghiệm
Vậy S = \(\varnothing\)
c, 2x4 - 20x + 18 = 0
\(\Leftrightarrow\) 2(x4 - 10x + 9) = 0
\(\Leftrightarrow\) x4 - 10x + 9 = 0
\(\Leftrightarrow\) (x - 1)\(\frac{x^4-10x+9}{x-1}\)
\(\Leftrightarrow\) (x - 1)(x3 + x2 + x - 9) = 0
Ta có: x3 + x2 + x - 9 > 0 với mọi x
\(\Rightarrow\) x - 1 = 0
\(\Leftrightarrow\) x = 1
Vậy S = {1}
d, (x2 + 5x)2 - 2(x2 + 5x) - 24 = 0
\(\Leftrightarrow\) x4 + 10x3 + 25x2 - 2x2 - 10x - 24 = 0
\(\Leftrightarrow\) x4 + 10x3 + 23x2 - 10x - 24 = 0
\(\Leftrightarrow\) (x + 1)\(\frac{x^4+10x^3+23x^2-10x-24}{x+1}\) = 0
\(\Leftrightarrow\) (x + 1)(x3 + 9x2 + 14x - 24) = 0
\(\Leftrightarrow\) (x + 1)(x - 1)\(\frac{x^3+9x^2+14x-24}{x-1}\) = 0
\(\Leftrightarrow\) (x + 1)(x - 1)(x2 + 10x + 24) = 0
\(\Leftrightarrow\) (x + 1)(x - 1)(x + 4)(x + 6) = 0
\(\Leftrightarrow\) x + 1 = 0 hoặc x - 1 = 0 hoặc x + 4 = 0 hoặc x + 6 = 0
\(\Leftrightarrow\) x = -1; x = 1; x = -4 và x = -6
Vậy S = {-1; 1; -4; -6}
Chúc bn học tốt!!
Giúp mk vs
a^2(b-c)+b^2(c-a)+c^2(a-b)/a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)
Với a,b #0 CMR: a^2/b^2 +b^2/a^2 > hoặc = a/b+b/a
giúp tơ nha
Biến đổi tương đương ta có
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}\ge0\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow a^4+b^4-2a^2b^2+2a^2b^2-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2-ab\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)^2-ab\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+b\right)^2-ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (Luôn đúng)
1)cho a/b=c/d chứng minh rằng a.b/c.d=(a+b)^2/(c+d)^2 . ( giúp mình với nha )
2)cho a/b=b/c chứng minh rằng a^2+b^2/b^2+c^2=a/c . ( giúp mình với nha )
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
Thay vào từng vế ta có
\(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => ĐPCM
a/b=c/d
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có :
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2
=> a/c.b/d= ( a+b/c+d ) mũ 2
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2
=> dpcm
Ta có a/b = c/d
=> a/c= b/d
adtccdtsbn ta có :