cho tam giác abc cân tại a,ah là đường cao gọi d là trung điểm cạnh ab,e là hình chiếu của h trên ac.gọi m,n lần lượt là trung điểm của ce,he.chứng minh tứ giác ADHC là hình thang.Chứng minh an vuông góc hm
Cho tam giác ABC vuông tại A có AH là đường cao . Gọi d và e lần lượt là hình chiếu của H xuống AB và AC.Gọi I là trung điểm của HB, K là trung điểm HC. Chứng minnh: a) DI song song EK
b) Gọi F là trung điểm IK. Chứng minh tam giác DEF cân
Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của D trên cạnh AB, AC. a) Chứng minh tứ giác ANDM là hình chữ nhật. b) Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao. c) Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: Xét tứ giác NKIM có
D là trung điểm của NI
D là trung điểm của KM
Do đó: NKIM là hình bình hành
mà NI vuông góc với KM
nên NKIM là hình thoi
c: Xét ΔABC có DN//AB
nên DN/AB=CN/CA=CD/CB
=>CN=1/2CA
hay N là trung điểm của AC
Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2
hay BM=1/2BA
=>M là trung điểm của AB
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên MA=MH
Ta có: ΔAHC vuông tại H
mà HN là đừog trung tuyến
nên HN=AN
Xét ΔMAN và ΔMHN có
MA=MH
AN=HN
MN chung
Do đó: ΔMAN=ΔMHN
Suy ra:góc MHN=90 độ
Cho tam giác abc cân tại A có AH là đường cao. Gọi M và N lần lượt là trung điểm của AB và AC. Biết AH=6cm, BC=8cm.
a)Tính diện tích tam giác ABC và độ dài cạnh MN.
b) Gọi D là điểm đối xứng của H qua D. Chứng minh tứ giác AHBD là hình chữ nhật.
c) Gọi E là điểm đối xứng của A qua H. Chứng minh tứ giác ABEC là hình thoi.
d) Gọi F là hình chiếu của H lên cạnh BC, gọi I, K lần lượt là trung điểm của HF và CF. Chứng minh EI vuông góc với BF.
Cho tam giác \(ABC\) cân tại \(A\). Gọi \(H\), \(D\) lần lượt là trung điểm của các cạnh \(BC\) và \(AB\)
a) Chứng minh rằng tứ giác \(ADHC\) là hình thang
b) Gọi \(E\) là điểm đối xứng với \(H\) qua \(D\). Chứng minh rằng tứ giác \(AHBE\) là hình chữ nhật
c) Tia \(CD\) cắt \(AH\) tại \(M\) và cắt \(BE\) tại \(N\). Chứng minh rằng tứ giác \(AMBN\) là hình bình hành.
a) Vì \(\Delta ABC\) cân tại \(A\) nên \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)
Vì \(\Delta ABC\) cân tại \(A\), có \(AH\) là trung tuyến (gt)
Suy ra \(AH\) là đường cao
Suy ra \(AH \bot BC\)
Suy ra \(\widehat {{\rm{AHB}}} = \widehat {{\rm{AHC}}} = 90^\circ \)
Xét \(\Delta AHB\) vuông tại \(H\) ta có: \(HD\) là trung tuyến
Suy ra \(HD = \frac{1}{2}AB\)
Mà \(DA = DB = \frac{1}{2}AB\) (do \(D\) là trung điểm \(AB\))
Suy ra \(DA = DB = HD\)
Suy ra \(\Delta DHB\) cân tại \(D\)
Suy ra \(\widehat {{\rm{ABC}}} = \widehat {{\rm{DHB}}}\)
Mà \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)
Suy ra \(\widehat {{\rm{DHB}}} = \widehat {{\rm{ACB}}}\)
Mà hai góc ở vị trí đồng vị
Suy ra \(DH\) // \(AC\)
Suy ra \(ADHC\) là hình thang
b) Vì \(E\) đối xứng với \(H\) qua \(D\) (gt)
Suy ra \(D\) là trung điểm của \(HE\)
Xét tứ giác \(AHBE\) ta có:
Hai đường chéo \(HE\) và \(AB\) cắt nhau tại trung điểm \(D\)
Suy ra \(AHBE\) là hình bình hành
Mà \(\widehat {{\rm{AHB}}} = 90^\circ \) (cmt)
Suy ra \(AHBE\) là hình chữ nhật
c) Vì \(AHBE\) là hình chữ nhật (cmt)
Suy ra \(AH\) // \(BE\) và \(AH = BE\)
Xét \(\Delta DEN\) và \(\Delta DHM\) ta có:
\(\widehat {{\rm{NED}}} = \widehat {{\rm{DHM}}}\) (do \(BE\) // \(AH\))
\(DE = DH\) (do \(D\) là trung điểm của \(HE\))
\(\widehat {{\rm{EDN}}} = \widehat {{\rm{MDH}}}\) (đối đỉnh)
Suy ra \(\Delta DEN = \Delta DHM\) (g-c-g)
Suy ra \(EN = MH\) (hai cạnh tương ứng)
Mà \(BE = AH\) (cmt)
Suy ra \(BE - EN = AH - MH\)
Suy ra \(NB = AM\)
Mà \(NB\) // \(AM\) (do \(EB\) // \(AH\))
Suy ra \(AMBN\) là hình bình hành
Cho tam giác ABC vuông tại A (AB < AC) , đường cao AH . Gọi E và F lần lượt là hình chiếu của điểm H trên AB và AC
a,Chứng minh tứ giác AEHF là hình chữ nhật
b, Gọi M là trung điểm của HC ,N là điểm đối xứng với A qua M .Chứng minh tứ giác AHNC là hình bình hành , tứ giác AFCN là hình thang cân.
c,Gọi O là giao điểm của AH và EF ,OC cắt AN tại G . Chứng minh rằng AN= 3AG
a)ta có : A=E=F=90 => AEHF hình chữ nhật
b)ta có: Am=AN, HM=MC =>ACNH hbh
Ta có AH//CN => AHE =CNH (đv) = FEH mà FC//NE => EFCN hìn thang cân
c)ta có OC, AM là trung tuyến của ∆ACH cắt nhau tại G => G là trọng tâm => AG =2/3 AM=2/3*AN/2=AN/3
=>AN=3AG
a) Xét tứ giác ADHE có:
\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)
=> ADHE là h.c.n
b) Ta có:
\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)
mà \(\widehat{IHD}=\widehat{KCE}\)
=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị
=> DI//EK
=> DEKI là hình thang
Cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC
a, Chứng minh AD . AB = AE . AC
b, Gọi M , N lần lượt là trung điểm của BH và CH . Chứng minh DE là tiếp tuyến chung của 2 đường tròn ( M , MD ) và ( N , NE )
c,Gọi P là trung điểm MN , Q là giao điểm của DE và AH , giả sử AB=6cm , AC=8cm . Tính độ dài PQ
a: XétΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Cho am giác ABC cân tại A. Gọi H,D lần lượt là trung điểm của các cạnh BC và AB.
a)Chứng minh tứ giác ADHC là hình thang.
b)Gọi E là điểm đoií xứng với Hqua D. Chứng minh tứ giác AHBE là hình chữ nhật.
c)Qua D vẽ đường thẳng song song với BC cắt AH tại I. Chứng minh 3 điểm E,I,C thẳng hàng.
d)Vẽ BK vuông góc với AC tại K. Chứng minh tam giác EKH là tam giác vuông.
a: Xét ΔABC có
H là trung điểm của BC
D là trung điểm của AB
Do đó: HD là đường trung bình
=>HD//AC
hay ADHC là hình thang
Cho am giác ABC cân tại A. Gọi H,D lần lượt là trung điểm của các cạnh BC và AB.
b)Gọi E là điểm đoií xứng với Hqua D. Chứng minh tứ giác AHBE là hình chữ nhật.
c)Qua D vẽ đường thẳng song song với BC cắt AH tại I. Chứng minh 3 điểm E,I,C thẳng hàng.
d)Vẽ BK vuông góc với AC tại K. Chứng minh tam giác EKH là tam giác vuông.
b: Xét tứ giác AHBE có
D là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
c: Xét ΔABH có
D là trung điểm của AB
DI//BH
Do đó; I là trung điểm của AH
Xét tứ giác AEHC có
AE//HC
AE=HC
Do đó: AEHC là hình bình hành
=>AH cắt EC tại trung điểm của mỗi đường
=>E,I,C thẳng hàng