Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tấn Sương offical
Xem chi tiết
Nguyen Chau Phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2022 lúc 23:29

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

b: Xét tứ giác NKIM có

D là trung điểm của NI

D là trung điểm của KM

Do đó: NKIM là hình bình hành

mà NI vuông góc với KM

nên NKIM là hình thoi

c: Xét ΔABC có DN//AB

nên DN/AB=CN/CA=CD/CB

=>CN=1/2CA
hay N là trung điểm của AC

Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2

hay BM=1/2BA
=>M là trung điểm của AB

Ta có: ΔAHB vuông tại H 

mà HM là đường trung tuyến

nên MA=MH

Ta có: ΔAHC vuông tại H

mà HN là đừog trung tuyến

nên HN=AN

Xét ΔMAN và ΔMHN có

MA=MH

AN=HN

MN chung

Do đó: ΔMAN=ΔMHN

Suy ra:góc MHN=90 độ

Nguyễn Huy Chương
Xem chi tiết
Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 22:24

a) Vì \(\Delta ABC\) cân tại \(A\) nên \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)

Vì \(\Delta ABC\) cân tại \(A\), có \(AH\) là trung tuyến (gt)

Suy ra \(AH\) là đường cao

Suy ra \(AH \bot BC\)

Suy ra \(\widehat {{\rm{AHB}}} = \widehat {{\rm{AHC}}} = 90^\circ \)

Xét \(\Delta AHB\) vuông tại \(H\) ta có: \(HD\) là trung tuyến

Suy ra \(HD = \frac{1}{2}AB\)

Mà \(DA = DB = \frac{1}{2}AB\) (do \(D\) là trung điểm \(AB\))

Suy ra \(DA = DB = HD\)

Suy ra \(\Delta DHB\) cân tại \(D\)

Suy ra \(\widehat {{\rm{ABC}}} = \widehat {{\rm{DHB}}}\)

Mà \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)

Suy ra \(\widehat {{\rm{DHB}}} = \widehat {{\rm{ACB}}}\)

Mà hai góc ở vị trí đồng vị

Suy ra \(DH\) // \(AC\)

Suy ra \(ADHC\) là hình thang

b) Vì \(E\) đối xứng với \(H\) qua \(D\) (gt)

Suy ra \(D\) là trung điểm của \(HE\)

Xét tứ giác \(AHBE\) ta có:

Hai đường chéo \(HE\) và \(AB\) cắt nhau tại trung điểm \(D\)

Suy ra \(AHBE\) là hình bình hành

Mà \(\widehat {{\rm{AHB}}} = 90^\circ \) (cmt)

Suy ra \(AHBE\) là hình chữ nhật

c) Vì \(AHBE\) là hình chữ nhật (cmt)

Suy ra \(AH\) // \(BE\) và \(AH = BE\)

Xét \(\Delta DEN\) và \(\Delta DHM\) ta có:

\(\widehat {{\rm{NED}}} = \widehat {{\rm{DHM}}}\) (do \(BE\) // \(AH\))

\(DE = DH\) (do \(D\) là trung điểm của \(HE\))

\(\widehat {{\rm{EDN}}} = \widehat {{\rm{MDH}}}\) (đối đỉnh)

Suy ra \(\Delta DEN = \Delta DHM\) (g-c-g)

Suy ra \(EN = MH\) (hai cạnh tương ứng)

Mà \(BE = AH\) (cmt)

Suy ra \(BE - EN = AH - MH\)

Suy ra \(NB = AM\)

Mà \(NB\) // \(AM\) (do \(EB\) // \(AH\))

Suy ra \(AMBN\) là hình bình hành

nguyen thi hoa trinh
Xem chi tiết
Võ Thị Mỹ Duyên
23 tháng 4 2020 lúc 12:46

a)ta có : A=E=F=90 => AEHF hình chữ nhật

b)ta có: Am=AN, HM=MC =>ACNH hbh

Ta có AH//CN => AHE =CNH (đv) = FEH mà FC//NE => EFCN hìn thang cân 

c)ta có OC, AM là trung tuyến của ∆ACH cắt nhau tại G => G là trọng tâm => AG =2/3 AM=2/3*AN/2=AN/3

=>AN=3AG

Khách vãng lai đã xóa
「Jane Rose 」
Xem chi tiết
Minh Hiếu
12 tháng 10 2023 lúc 11:43

a) Xét tứ giác ADHE có:

\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)

=> ADHE là h.c.n

b) Ta có:

\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)

mà \(\widehat{IHD}=\widehat{KCE}\)

=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị

=> DI//EK

=> DEKI là hình thang

nguyễn hương trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2022 lúc 20:07

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

nguyễn mai lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 14:58

a: Xét ΔABC có

H là trung điểm của BC

D là trung điểm của AB

Do đó: HD là đường trung bình

=>HD//AC

hay ADHC là hình thang

Thanh Tú Hàn Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 21:51

b: Xét tứ giác AHBE có

D là trung điểm chung của AB và HE

góc AHB=90 độ

Do đó: AHBE là hình chữ nhật

c: Xét ΔABH có

D là trung điểm của AB

DI//BH

Do đó; I là trung điểm của AH

Xét tứ giác AEHC có

AE//HC

AE=HC

Do đó: AEHC là hình bình hành

=>AH cắt EC tại trung điểm của mỗi đường

=>E,I,C thẳng hàng