Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn phạm bảo lâm
Xem chi tiết
thái thu phương
Xem chi tiết
dang thanh dat
13 tháng 11 2016 lúc 15:33

\(=\left(x^2+8x+15\right)\left(x^2+8x+7\right)+15\)

đặt:\(^{x^2+8x+11=t}\)

ta co \(\left(t+4\right)\left(t-4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)\Rightarrow\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)

\(\Rightarrow\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

Huyền Anh
Xem chi tiết
Trần Việt Linh
10 tháng 12 2016 lúc 21:39

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) \(\left(1\right)\)

Đặt \(x^2+8x+11=t\) , khi đó

\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)+15\)

\(=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\\ =\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Lightning Farron
10 tháng 12 2016 lúc 21:49

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+7\) thì C trở thành:

\(t\left(t+8\right)+15=t^2+8t+15\)

\(t^2+3t+5t+15=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+5\right)\left(t+3\right)=\left(x^2+8x+7+5\right)\left(x^2+8x+7+3\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Trần Đăng Nhất
29 tháng 7 2017 lúc 16:58

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(C=\left(x^2+8+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=k\)

\(\Rightarrow C=k\left(k+8\right)+15=k^2+8k+15\)

\(\Rightarrow C=k^2+3k+5k+15\)

\(\Rightarrow C=k\left(k+3\right)+5\left(k+3\right)\)

\(\Rightarrow C=\left(k+3\right)\left(k+5\right)\)

\(\Rightarrow C=\left(x^2+8x+7+6\right)\left(x^2+8x+7+3\right)\)

\(\Rightarrow C=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(\Rightarrow C=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

hồ thị thu hoài
Xem chi tiết
ღ๖ۣۜLinh
28 tháng 10 2019 lúc 16:56

a)x^5+x+1

=x5-x2+x2+x+1

=x2(x3-1)+x2+x+1

=x2(x+1)(x2+x+1)+x2+x+1

=(x2+x+1)(x3+x2+1)

b)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt x2+8x+7=t

=> t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+10)(x2+8x+12)

Khách vãng lai đã xóa
Nguyễn Hạ Long
Xem chi tiết
Trần Đức Thắng
3 tháng 8 2015 lúc 21:08

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

Nguyễn Gia Hiệu
1 tháng 8 2021 lúc 16:57

X^2-6+8

Khách vãng lai đã xóa
TRANG NGUYỄN
Xem chi tiết
Anh Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 9 2016 lúc 18:13

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

Ta có : \(A=\left[\left(x+1\right)\left(x+7\right)\right].\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+11\) , suy ra \(A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(\Rightarrow A=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Võ Đông Anh Tuấn
5 tháng 9 2016 lúc 18:13

f(x) = (x+1)(x+3)(x+5)(x+7)+15

        = (x+1)(x+7)(x+3)(x+5)+15

        = (x2+7x+x+7)(x2+5x+3x+15)+15

        = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

trang
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 15:39

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

Trịnh Đình Thi
28 tháng 11 2021 lúc 10:48
Lol .ngudoots
Khách vãng lai đã xóa
Bánh cá nướng :33
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 7:50

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)