tim x , biet
a) 3 - x = 4
b) 7 + x = 5
Tim so nguyen x,y biet
a) (x+5) mu 2 + (2y - 8 ) mu 2 = 0
b)(x + 3).(2y - 1 ) = 5
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
tim x thuoc N bieta, 125.n 5 7b, 2 3.n 3 4 2 5 5c, 2 3 2 n 3 2.n.5 10 10 2d, 5 n=
125
a.x/60=-3/4
b. 2/5=12/x
c. x-5/7 =6/21
dx+7/8 =63/24
e x/6=24/x
f .x+5= 4/x+5
g. x+12/x+8=4/3
h. x+9/x+7=9/8
a)\(\dfrac{x}{60}=-\dfrac{3}{4}\)
\(\Rightarrow x\cdot4=60\cdot\left(-3\right)\)
\(x\cdot4=-180\)
x=45
b)\(\dfrac{2}{5}=\dfrac{12}{x}\)
\(\Rightarrow2x=5\cdot12\)
\(2x=60\)
x=30
c)\(x-\dfrac{5}{7}=\dfrac{6}{21}\)
\(x=\dfrac{2}{7}+\dfrac{5}{7}\)
x=1
d)\(x+\dfrac{7}{8}=\dfrac{63}{24}\)
\(x=\dfrac{21}{8}-\dfrac{7}{8}\)
\(\dfrac{14}{8}\)
a)\(\dfrac{x}{60}=\dfrac{-3}{4}\Rightarrow x=\dfrac{-3.60}{4}=-45\)
b)\(\dfrac{2}{5}=\dfrac{12}{x}\Rightarrow x=\dfrac{5.12}{2}=30\)
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
Tính:
a) 2/3 + 52 - 3/4
b) 2/5 x 1/2 : 1/3
c) 1/2 x 1/3 + 1/4
d) 2/7 : 2/3 - 1/7
e) 7/9 x 3/14 : 5/8
g) 5/12 - 7/32 : 21/16
a) x/14 - 1/7 = -3/4
b) x -1/8 =5/8
c) 1/5 + 1/11 < x/55 < 2/5 + 1/55 mà x thuộc z
a) Ta có: \(\dfrac{x}{14}-\dfrac{1}{7}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x}{14}=\dfrac{-3}{4}+\dfrac{1}{7}=\dfrac{-21}{28}+\dfrac{4}{28}=\dfrac{-17}{28}\)
hay \(x=\dfrac{-17\cdot14}{28}=\dfrac{-17}{2}\)
Vậy: \(x=-\dfrac{17}{2}\)
\(a)\dfrac{x}{14}-\dfrac{1}{7}=\dfrac{-3}{4}\)
\(\dfrac{x}{14}=\dfrac{-3}{4}+\dfrac{1}{7}\)
\(\dfrac{x}{14}= \dfrac{-17}{28}\)
\(x=\dfrac{14.(-17)}{28}\)
\(x=\dfrac{-17}{2}\)
\(b)x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{6}{8}=\dfrac{3}{4}\)
\(c)\dfrac{1}{5}+\dfrac{1}{11}<\dfrac{x}{55}<\dfrac{2}{5}+\dfrac{1}{55}(xthuộc Z )\)
\(\Rightarrow \dfrac{11}{55}+\dfrac{5}{55}<\dfrac{x}{55}<\dfrac{22}{55}+\dfrac{1}{55} \)
\(\Rightarrow \dfrac{16}{55}<\dfrac{x}{55}<\dfrac{23}{55}\)
\(\Rightarrow 21< x < 23\)
\(\Rightarrow x=22\)
a. 2/5 + 5/7 - 3/4
b. 8/9 : 7/13 x 9/5
bài 1 : tìm x
a) x + \(\dfrac{7}{8}\) = \(\dfrac{13}{2}\) : 4
b) x : \(\dfrac{5}{3}\) = \(\dfrac{6}{5}\) - \(\dfrac{2}{3}\)
bài 2 : giá trị của biểu thức \(\dfrac{28}{25}\) : \(\dfrac{7}{15}_{ }\) x 5 là ....
Bài 2:
\(=\dfrac{28}{25}\cdot\dfrac{15}{7}\cdot5=\dfrac{75}{25}\cdot4=12\)
Bài 1:
a: \(x+\dfrac{7}{8}=\dfrac{13}{2}:4=\dfrac{13}{8}\)
nên x=13/8-7/8=6/8=3/4
b: \(x:\dfrac{5}{3}=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{18-10}{15}=\dfrac{8}{15}\)
nên \(x=\dfrac{8}{15}\cdot\dfrac{5}{3}=\dfrac{8}{9}\)
Giải phương trình:
a) \(\dfrac{2x-5}{x+5}\) = 4
b) \(\dfrac{x^2-4}{x}\) = \(\dfrac{2x+3}{2}\)
c) \(\dfrac{2x+3}{2x-1}\) = \(\dfrac{x-3}{x+5}\)
d) \(\dfrac{3x-2}{x+7}\) = \(\dfrac{6x+1}{2x-3}\)
a) ĐKXĐ: x≠-5
Ta có: \(\dfrac{2x-5}{x+5}=4\)
\(\Leftrightarrow2x-5=4\left(x+5\right)\)
\(\Leftrightarrow2x-5=4x+20\)
\(\Leftrightarrow2x-5-4x-20=0\)
\(\Leftrightarrow-2x-25=0\)
\(\Leftrightarrow-2x=25\)
hay \(x=\dfrac{-25}{2}\)(nhận)
Vậy: \(S=\left\{-\dfrac{25}{2}\right\}\)
b) ĐKXĐ: x≠0
Ta có: \(\dfrac{x^2-4}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-4\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-8=2x^2+3x\)
\(\Leftrightarrow2x^2-8-2x^2-3x=0\)
\(\Leftrightarrow-3x-8=0\)
\(\Leftrightarrow-3x=8\)
hay \(x=\dfrac{-8}{3}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{3}\right\}\)
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)
Ta có: \(\dfrac{2x+3}{2x-1}=\dfrac{x-3}{x+5}\)
\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\)
\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)
\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)
\(\Leftrightarrow2x^2+13x+15-2x^2+7x-3=0\)
\(\Leftrightarrow20x+12=0\)
\(\Leftrightarrow20x=-12\)
hay \(x=-\dfrac{3}{5}\)(nhận)
Vậy: \(S=\left\{-\dfrac{3}{5}\right\}\)
d) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+x+42x+7\)
\(\Leftrightarrow6x^2-13x+6=6x^2+43x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
a,3/4 . (-5/12)+3/4.(-7/12)
2. tìm x
a, 2/3 .x-0,5=3/4
b,3/x-2=-2/x-4 (đk x khác 2;x khác 4)
Bài 2:
a: =>2/3x=3/4+1/2=3/4+2/4=5/4
=>x=5/4:2/3=5/4*3/2=15/8
b:=>-2x+4=3x-12
=>-5x=-16
=>x=16/5