Cho x+y+z=0 và x^2+y^2+z^2=9. Tính P=x^4+y^4+z^4
Cho x+y-z=0 và xy+yz-xz=0.tính s=(x-z-2)^3+1/7(x+y-7)^3-4/9(y+z-3/2)^4
cho x+y+z=0 và x^2+y^2+z^2=a^2. tính gtbt x^4+y^4+z^4
Cho x+y+z=0 và x^2+y^2+z^2=1 tính M = 2( x^4 + y^4 +z^4)
Bạn tham khảo nhé!
http://olm.vn/hoi-dap/question/479780.html
Lời giải cho bài của bạn ở đây nhé! http://olm.vn/hoi-dap/question/479780.html
Cho x y z là các số thực khác 0 thỏa mãn x + y + z = 3 và x^2 + y^2 + z^2 = 9 . Tính GTBT : D = ( yz/x^2 + xz/y^2 + xy/z^2 -4)^2019
cho các số thực a,b,c,x,y,z thỏa mãn a,b,c khác 0 và ( x^4 +y^4 +z^4)/(a^4+b^4+c^4)=x^4/a^4+y^4/b^4+z^4/c^4,tính P=x^2+y^9+z^1945+2017
cho `x,y,z` khác `0` thỏa mãn `x + y/2 + z/3 = 1` và `1/x + 2/y + 3/z =0`. Chứng tỏ `A= x^2 + (y^2)/4 + (z^2)/9 =1`
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1
Cho x,y,z thỏa mãn :{x+y+z=0,x^2+y^2+z^2=14. tính B= x^4+y^4+z^4
https://olm.vn/hoi-dap/detail/68409793765.html
Bạn tham khảo ở đây.
cho 3 số thực a,b,c thoả mãn x+y+z=9 và x^2+y^2+z^2=27 tính (x-4)^2018+(y-4)2019+(z-4)^2020
\(x+y+z=9\Leftrightarrow\left(x+y+z\right)^2=81\\ \Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=81\\ \Leftrightarrow xy+yz+xz=\dfrac{81-27}{2}=27\\ \Leftrightarrow x^2+y^2+z^2=xy+yz+xz\\ \Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z=\dfrac{9}{3}=3\left(x+y+z=9\right)\)
\(\Leftrightarrow\left(x-4\right)^{2018}+\left(y-4\right)^{2019}+\left(z-4\right)^{2020}\\ =\left(-1\right)^{2018}+\left(-1\right)^{2019}+\left(-1\right)^{2020}=1-1+1=1\)
cho x,y,z # 0 ;x+y+z=1. tính 2.(x^4+y^4+z^4)