Tìm xyz
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}\)và \(x^2.y^2=162\)
Tìm x,y,z biết
1. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=-30
2.\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x^2+y^2-z^2\)=-12
3.\(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}\)và xyz=192
Tìm x,y,z biết:\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\) và xyz=12
Ta có:\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)\(\Rightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)
Đặt \(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\)
\(\Rightarrow x=4k-1,y=2k+2,z=3k-2\)
Theo đề ta có:xyz=12
\(\Rightarrow\left(4k-1\right)\left(2k+2\right)\left(3k-2\right)=12\)
\(\Rightarrow\left(8k^2+8k-2k-2\right)\left(3k-2\right)=12\)
\(\Rightarrow\left(8k^2+6k-2\right)\left(3k-2\right)=12\)
\(\Rightarrow\left(8k^2+6k\right)\left(3k-2\right)-2\left(3k-2\right)\)
\(\Rightarrow24k^3-16k^2+18k^2-12k-6k+4=12\)
\(\Rightarrow24k^3+2k^2-18k=8\)
\(\Rightarrow24k^3+2k^2-18k-8=0\)
\(\Rightarrow\left(k-1\right)\left(24k^2+26k+8\right)=0\)(làm hơi tắt)
TH1:k-1=0,k=1
TH2:\(\left(24k^2+26k+8\right)=0\)
\(24\left(k+\frac{13}{24}\right)^2+\frac{23}{24}>0\)(vô lí)
\(\Rightarrow k=1\)
\(\Rightarrow x=3,y=4,z=1\)
các bạn ko cần làm đâu mình bít giải rồi
Tìm x, y,z biết:
a) \(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{y}{x+y-3}\)
b) \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{2}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)
Help me ! mik hứa sẽ tk
Tìm x,y,z biết: \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)và xyz=12
Tìm x,y,z biết:
\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\) và xyz=12
đề sai nói mình nha mấy thánh môn toán
Tìm x, y, z biết \(\frac{4}{x+1}=\frac{2}{y-3}=\frac{3}{z+2}\) và xyz=12
Đặt \(\frac{4}{x+1}=\frac{2}{y-3}=\frac{3}{z+2}=\frac{1}{k}\)
Suy ra: x+1=4k -> x=4k-1
y-3=2k -> y=2k+3
z+2=3k -> z=3k-2
Tiếp tuc: 12=xyz=(4k-1)(2k+3)(3k-2) . Tự làm nốt nhé, mình k thích khai triển tung tóe đâu
LÀM ĐC THÌ BẤM, KO ĐC THÌ THÔI
toi lam duoc den day roi con doan sau thi khong lam duoc
ta có: đặt bằng k
x=4k+1
y=2k+2
z=3k+2
mà:xyz=12
(4k+1)+(2k+2)-(3k+2)
Tìm x,y,z biết \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)
\(ĐK:x,y,z\ne0\)
Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)
\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0
Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)
Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)
Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).
Nhìn lozic qué bạn ey!!!
cho x,y,z>1 và x+y+z=xyz
tìm min \(\frac{x-2}{x^2}+\frac{y-2}{y^2}+\frac{z-2}{z^2}\)
Cho 3 số x,y,z >1 và x+y+z=xyz.
Tìm giá trị nhỏ nhất của biểu thức: \(M=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}.\)