B=(x+1)2+(2x-1)2+2021
Rút gọn:
a) A=(5-2x)2-4x(x-5)
b) B= (4-3x)(4+3x)+(3x+1)2
c) C= (x+1)3-x(x2+3x+3)
d) D=(2021x-2020)2-2(2021x-2020)(2020x-2021)+(2020x-2021)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
Xét tính chẵn lẻ của hàm số sau:
y=(\(2x-2^{2021}\))+(\(2x+2^{2021}\))
y=\(\dfrac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
b: \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}\)
\(=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)
=-f(x)
Vậy: f(x) là hàm số lẻ
Tìm x biết
a/ x + 2006 = 2021
b/ 2x - 2016 = 2⁴.4
C/ 3. ( 2x + 1) ³ =81
a) x + 2006 = 2021
x= 2021 - 2006
x= 15
b) 2x - 2016 = 2 4 . 4
2x - 2016 = 64
2x = 64 + 2016
2x = 2080
x= 2080 : 2
x= 1040
c) 3. ( 2x + 1) ³ =81
( 2x-1)3 = 27
( 2x-1)3 = 33
=> 2x-1 = 3
2x= 2
x= 1
a, \(x\) + 2006 = 2021
\(x\) = 2021 - 2006
\(x\) = 15
b, 2\(x\) - 2016 = 24.4
2\(x\) - 2016 = 64
2\(x\) = 64 + 2016
2\(x\) = 2080
\(x\) = 2080 : 2
\(x\) = 1040
1) tìm x biết
a) (x+2)2 + (x – 1)2 + (x -3)(x + 3) – 3x2 = - 8
b) 2022x(x – 2021) – x + 2021 = 0
c) x2 – (x – 3)(2x + 7) = 9
\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\Rightarrow x=-2\\ b,\Rightarrow\left(x-2021\right)\left(2022x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{2022}\end{matrix}\right.\\ c,\Rightarrow\left(x^2-9\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3-2x-7\right)=0\\ \Rightarrow\left(x-3\right)\left(-4-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Tìm các giới hạn sau:
a) \(\lim\limits_{h\rightarrow0}\dfrac{2\left(x+h\right)^3-2x^3}{h}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{\left(x+x^2+...+x^{2021}\right)-2021}{x-1}\)
a/ \(=\lim\limits_{h\rightarrow0}\dfrac{2x^3+6x^2h+6xh^2+2h^3-2x^3}{h}\)
\(=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\left(6xh+6x^2+2h^2\right)=6x^2\)
b/ Xet day :\(S=x+x^2+....+x^{2021}\)
Day co \(\left\{{}\begin{matrix}u_1=x\\q=x\end{matrix}\right.\Rightarrow S=u_1.\dfrac{q^{2021}-1}{q-1}=x.\dfrac{x^{2021}-1}{x-1}\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}-x}{x-1}-2021}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-x-2021x+2021}{\left(x-1\right)^2}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^{2022}}{x^2}-\dfrac{x}{x^2}-\dfrac{2021x}{x^2}+\dfrac{2021}{x^2}}{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow1}\dfrac{x^{2020}}{1}=1\)
Lam lai cau b, hinh nhu bi nham sang dang \(\dfrac{\infty}{\infty}\) roi
Xet day: \(S=x+x^2+...+x^{2021}\)
\(\Rightarrow S=x.\dfrac{x^{2021}-1}{x-1}=\dfrac{x^{2022}-x}{x-1}\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{x^{2022}-2022x+2021}{\left(x-1\right)^2}\)
L'Hospital: \(\Rightarrow...=\lim\limits_{x\rightarrow1}\dfrac{2022x^{2021}-2022}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2022.2021.x^{2020}}{2}=2043231\)
Is that true :v?
Cau a co the xai L'Hospital cung ra:
L'Hospital:
\(...=\lim\limits_{h\rightarrow0}\dfrac{6xh^2+6x^2h+2h^3}{h}=\lim\limits_{h\rightarrow0}\dfrac{6h^2+12xh+6x^2+12xh+6h^2}{1}=6x^2\)
tìm các khoảng đơn điệu của hàm số
a)y = \(\dfrac{-2x+1}{x^2-3x+1}\)
b)y = \(x\left(2021+\sqrt{2020-x^2}\right)\)
giải phương trình :\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
Đk: \(\forall x\in R\)
Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=2021\)
Lập bảng xét dầu
x -2 1
x - 1 - | - 0 +
x + 2 - 0 + | -
Xét các TH xảy ra :
TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021
<=> -2x = 2022 <=> x = -1011 (tm)
TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021
<=> 0x = 2018 (vô lí) => pt vô nghiệm
TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021
<=> 2x = 2020 <=> x = 1010 (tm)
Vậy S = {-1011; 1010}
a, \(\left(2x-1\right)\left(x+\dfrac{2}{3}\right)=0\)
b, \(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
a) + Chia thành 2 trường hợp
- 2x - 1 = 0
2x = 0 + 1
2x = 1
x = 1 : 2
x = 0,5
- x + 2/3 = 0
x = 0 - 2/3
x = -2/3
vậy x = { 0,5 ; -2/3 }
a)Thực hiện phép tính:(3x+1)(3x-1)-(18x^3+5x^2-2x):2x
b)Tìm x biết:3x(x-2021)-x+2021=0
\(a,\left(3x+1\right)\left(3x-1\right)-\left(18x^3+5x^2-2x\right):2x\\ =\left(9x^2-1\right)-\left(9x^2+\dfrac{5}{2}x-1\right)\\ =9x^2-1-9x^2-\dfrac{5}{2}x+1=\dfrac{5}{2}x\)
\(b,3x\left(x-2021\right)-x+2021=0\\ \Rightarrow b,3x\left(x-2021\right)-\left(x-2021\right)=0\\ \Rightarrow\left(x-2021\right)\left(3x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{3}\end{matrix}\right.\)