Tìm giá trị nhỏ nhất của
a) \(A=\left(2x+1\right)\left(x-5\right)\)
b) \(B=x^2+5y^2+4xy-2y+2019\)
bài I . Tìm giá trị nhỏ nhất của các biểu thức
a, B =\(\left(x-3\right)^2\)+\(\left(x-1\right)^2\)
b, C= \(x^2\)+ 4xy + \(5y^2\)- 2y
c, D = | x + 5| + | x +8|
Bài II. tìm giá trị lớn nhất của :
a, M= -\(x^2\)- 4x + 5
b, N = 2 \(\left(x+3\right)^2\)- 3\(\left(x+2\right)^2\)
Câu 27: Tìm giá trị nhỏ nhất của các biểu thức sau:
a) A= \(x^2+2x+5\)
b) B= \(4x^2+4x+11\)
c) C= \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
d) D= \(x^2-2x+y^2-4y+7\)
e) E= \(x^2-4xy+5y^2+10x-22y+28\)
mk gợi ý, phần còn lại tự làm
a) \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)
b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
c) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
d) \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
e) \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
a) A = x2 + 2x + 5
= x2 + 2x + 1 + 4
= ( x + 1 )2 + 4
Nhận xét :
( x + 1 )2 > 0 với mọi x
=> ( x + 1 )2 + 4 > 4
=> A > 4
=> A min = 4
Dấu " = " xảy ra khi : ( x + 1 )2 = 0
=> x + 1 = 0
=> x = - 1
Vậy A min = 4 khi x = - 1
b) B = 4x2 + 4x + 11
= ( 2x )2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét :
( 2x + 1 )2 > 0 với mọi x
=> ( 2x + 1 )2 + 10 > 10
=> B > 10
=> B min = 10
Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(\frac{-1}{2}\)
Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)
c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
= ( x2 + 5x ) 2 - 62
= ( x2 + 5x )2 - 36
Nhận xét :
( x2 + 5x )2 > 0 với mọi x
=> ( x2 + 5x )2 - 36 > - 36
=> C > - 36
=> C min = - 36
Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy C min = - 36 khi x = 0 hoặc x = - 5
d) D = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x
( y - 2 )2 > 0 với mọi y
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> D > 2
=> D min = 2
Dấu " = " xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy D min = 2 khi x = 1 và y = 2
a)\(A=x^2+2x+5\)
\(A=x^2+2.x.1+1+4\)
\(A=\left(x+1\right)^2+4\ge4\)
Dấu = xảy ra khi :
\(x+1=0\Rightarrow x=-1\)
Vậy Amin=4 tại x =-1
bài I . Tìm giá trị nhỏ nhất của các biểu thức
a, B =\(\left(x-3\right)^2\)+\(\left(x-1\right)^2\)
b, C= \(x^2\)+ 4xy + \(5y^2\)- 2y
c, D = | x + 5| + | x +8|
Bài II. tìm giá trị lớn nhất của :
a, M= -\(x^2\)- 4x + 5
b, N = 2 \(\left(x+3\right)^2\)- 3\(\left(x+2\right)^2\)
giúp tớ làm mấy bài này nhé . Cảm ơn
a_ \(B=\left(x-3\right)^2+\left(x-1\right)^2\ge0\)
\(MinB=0\Rightarrow\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=1\end{cases}}\)
b) \(C=x^2+4xy+5y^2-2y\)
\(=\left(x+2y\right)^2+y^2-2y\)
\(=\left(x+2y\right)^2+y^2-2y\ge-2y\)
\(MinC=-2y\Leftrightarrow\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Rightarrow x=y=0}\)
Bài 1.Tính giá trị nhỏ nhất của biểu thức :
C= \(x^2-4xy+5y^2+10x-22y+28\)
Bài 2.Tính giá trị lớn nhất của biểu thức :
A= \(-x^2+6x-11\)
Bài 3. Phân tích đa thức thành nhân tử :
a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
b) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
Bài 4. tìm x biết :
a) \(\left(x-2\right)^2-\left(x-3\right).\left(x+3\right)=6\)
b) \(4\left(x-3\right)^2-\left(2x-1\right).\left(2x+1\right)=10\)
các bạn làm giùm mih đi câu nào cũng được
. Tìm giá trị nhỏ nhất của các biểu thức
a, B =$$+\(\left(x-1\right)^2\)
b, C= \(x^2\)+ 4xy + \(5y^2\)- 2y
c, D = | x + 5| + | x +8|
Tìm giá trị nhỏ nhất của biểu thức và giá trị tương ứng của x,y
\(A=\left(3x+4\right)^{2018}+\left|3y+5\right|+2018^0\\\)
\(B=2\left|x-100\right|+\left|2x+1\right|\)
\(C=\left|x-y-5\right|+2018.\left(y-3\right)^{2020}+2019\)
\(D=\left|2x+2018\right|+2\left|x-1\right|\)
Tìm giá trị nhỏ nhất của biểu thức:
a) \(A=3.\left|2x-\dfrac{3}{2}\right|+2021^0\)
b) \(B=2.\left|x-6\right|+3.\left(2y-1\right)^2+2021^0\)
Giúp mk nốt bài này nha
a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)
\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)
b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)
\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
bài I . Tìm giá trị nhỏ nhất của các biểu thức
b, C= \(x^2\)+ 4xy + \(5y^2\)- 2y
c, D = | x + 5| + | x +8|
Bài II. tìm giá trị lớn nhất của :
a, M= -\(x^2\)- 4x + 5
b, N = 2 \(\left(x+3\right)^2\)- 3\(\left(x+2\right)^2\)
giúp tớ làm mấy bài này nhé . Cảm ơn
1) b)\(C=x^2+4xy+5y^2-2y=x^2+2.x.2y+\left(2y\right)^2+y^2-2y\)\(=\left[x^2+2.x.2y+\left(2y\right)^2\right]+\left(y^2-2y+1^2\right)\)\(=\left(x+2y\right)^2+\left(y-1\right)^2\ge0\)
Đẳng thức xảy ra khi: \(y-1=0\Rightarrow y=1\)và \(x+2y=0\Leftrightarrow x+2.1=0\Rightarrow x=-2\)
1c) /x + 5/ = /-x - 5/
<=> D = /x + 5/ + /x + 8/ = /-x - 5/ + / x + 8/ \(\ge\)/-x - 5 + x +8/ = 3
Đẳng thức xảy ra khi: (-x - 5)(x + 8) = 0 => x = -5 hoặc x= -8
Vậy giá trị nhỏ nhất của D là 3 khi x = -5 hoặc x = -8
(dấu gạch chéo // là dấu giá trị tuyệt đối nha)
Bài 1 :
1 . \(2x^3-12x^2+10x\)
2 . Tìm giá trị nhỏ nhất của biểu thức Q = \(\left(x-3\right)\left(4x+5\right)+2019\)
3 . Cho a+b = 1 . Tính giá trị biểu thức T = \(4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
Mình đang cần gấp . Đảm bảo k trả đầy đủ + kb :'>
2. \(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(Q=4x^2+5x-12x-15+2019\)
\(Q=4x^2-7x+2004\)
\(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\)
\(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)
\(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)
\(\Rightarrow Q\ge\frac{32255}{16}\)
\(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)
3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\) (do a+b=1)
\(T=4a^2-4ab+4a^2-6a^2-6b^2\)
\(T=-2a^2-4ab-2b^2\)
\(T=-2\left(a^2+2ab+b^2\right)\)
\(T=-2\left(a+b\right)^2\)
\(T=-2.1^2=-2.1=-2\) (do a+b=1)