Cho y=x+3 (d1) ;y=(2m+1)x+3 (d2) \(\left(m\ne-\frac{1}{2};m\ne0\right)\) (d1) cắt Ox tại A ,(d2) cắt Oy tại B , (d1) cắt (d2) tại C . Tìm m để tam giác ABC cân tại C
Cho (d): y= (m-1)x + m (d1): y= 2x - 3 Vẽ (d) và (d1) với m=3 và tính khoảng cách (d) và (d1)
Khi m=3 thì (d): y=2x+3
Lấy A(0;3) thuộc (d)
(d1): y=2x-3
=>2x-y-3=0
\(h\left(A;d1\right)=\dfrac{\left|0\cdot2+\left(-1\right)\cdot3+\left(-3\right)\right|}{\sqrt{2^2+1^2}}=\dfrac{6}{\sqrt{5}}\)
cho 2 hàm số d1: y=mx+2 và d2: y=(2m-3)x-3. tìm m để d1 cắt d2 tại A(x;y) sao cho tỉ lệ x:y=2:3
1. Cho d: y = (\(^{m^2}\) + 2m)x + m + 1 . Tìm m để:
a, d // d1: y = (m + 6)x - 2
b, d ⊥ d2: y = \(\dfrac{-1}{3}\)x - 3
c, d ≡ d3: y = -\(^{m^2}\).x + 1
2. Tìm d // d1: y = \(\dfrac{-1}{2}\)x + 1 và d đi qua giao điểm của d1: y = 4x - 3 và d2: y = -x + 1
Bài 1:
b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)
Cho hàm số y=-x có đồ thị (D1) và hàm số y=2x-3 có đồ thị (D2)
a)Vẽ (D1), (D2) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm của (D1), (D2) bằng phép toán
b)Cho (D3):y=(2k-1)x+3-k. Tìm k để (D1), (D2) và (D3) đồng quy
Cho d1 : y = 2x – 3
d2 : y = -x + 9
d3 : y = (m – 1)x + m – 3
Tìm m để d1, d2 và d3 đồng quy
Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:
\(2x-3=-x+9\)
\(\Leftrightarrow3x=12\)
hay x=4
Thay x=4 vào \(\left(d2\right)\), ta được:
\(y=-4+9=5\)
Thay x=4 và y=5 vào \(\left(d3\right)\), ta được:
\(4\left(m-1\right)+m-3=5\)
\(\Leftrightarrow4m-4+m-3=5\)
\(\Leftrightarrow5m=12\)
hay \(m=\dfrac{12}{5}\)
Bài 1: cho 2 đường thẳng y=(m-3)x+3 (d1) và y= -x+m (d2). Tìm m để (d1)// (d2)
Bài 2: cho 2 đường thẳng y=2x (d1) và y= -x+3 (d2)
a) tìm tọa độ giao điểm A của (d1) và (d2)
b) viết phương trình đường thẳng (d3) qua A và // với đường thẳng y= x+4 (d)
Giải chi tiết dùm mình với ạ :<
BÀI 1
để d1 và d2 // thì: m-3=-1(1) ; m khác 3 (2)
ta có: (1) <=> m=2 (3)
từ (2) và (3) => để d1//d2 thì m = 2
Cho 2 đường thẳng (d1):
y = m(x+2);(d2):y=(2m-3)x+2 Tìm m để:
a) (d1) và (d2) song song với nhau.
b) (d1) và (d2) trùng với nhau.
c) (d1) và (d2) vuông góc với nhau.
a) \(\left(d_1\right):y=mx+2m\)
\((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Rightarrow m=3\)
b) \(\left(d_1\right)\equiv\left(d_2\right)\Rightarrow\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Rightarrow\) không có m thỏa
c) \(\left(d_1\right)\bot\left(d_2\right)\Rightarrow m.\left(2m-3\right)=-1\Rightarrow2m^2-3m+1=0\)
\(\Rightarrow\left(m-1\right)\left(2m-1\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{2}\end{matrix}\right.\)
Ta có: (d1): y=m(x+2)
nên y=mx+2m
a) Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2m=-3\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne1\end{matrix}\right.\Leftrightarrow m=3\)
b) Để (d1) trùng với (d2) thì \(\left\{{}\begin{matrix}m=2m-3\\2m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Cho hai đường thẳng (d1 ) : y = (m +1)x + m+3 và (d2 ) : y= (2m+1)x-m+3 với m khác 0. Tìm tất cả các giá trị m (m khác 0) để (d1) và (d1) cắt nhau tại điểm M sao cho M nằm trên đường thẳng (d): y=x
Câu 3:Cho đường thẳng (d1):y=(m-1)x+4.Tìm giá trị của m để:
a)Đường thẳng (d1) và đường thẳng (d2):y=(2m+3)x+3m-1 song song với nhau.
b)Đường thẳng (d1) và đường thẳng (d3):y=x+2m+2 cắt nhau tại một điểm có tung độ bằng 3.
c)Đường thẳng (d1) tiếp xúc với đường tròn tâm O bán kính 2\(\sqrt{2}\)(với O là gốc tọa độ)
Để hàm số y=(m-1)x+4 là hàm số bậc nhất thì \(m-1\ne0\)
hay \(m\ne1\)
a) Để (d1) và (d2) song song với nhau thì \(\left\{{}\begin{matrix}m-1=2m+3\\3m-1\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2m=3+1\\3m\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-m=4\\3m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\m\ne\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=-4\)
Kết hợp ĐKXĐ, ta được: m=-4
Vậy: Để (d1) và (d2) song song với nhau thì m=-4
cho 2 hàm số bậc nhất
(d1) y=\(\left(m-3\right)x+m^2-6\)
(d2) y=\(-2mx+3\)
xác định m để:(d1) \(//\) (d2);
(d1) cắt (d2) nhau tại 1 diểm trên trục tung,
(d1)\(\equiv\)(d2)
\(\left(d_1\right)\text{//}\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne\pm3\end{matrix}\right.\Leftrightarrow m=1\\ \left(d_1\right)\cap\left(d_2\right)\text{ tại 1 điểm trên Oy}\\ \Leftrightarrow\left\{{}\begin{matrix}y=\left(m-3\right)\cdot0+m^2-6\\y=-2m\cdot0+3=3\end{matrix}\right.\Leftrightarrow m^2-6=3\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\\ \left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6=3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)