Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Xuân An
Xem chi tiết
Nguyễn Đăng Nhân
21 tháng 9 2023 lúc 19:57

\(A=1+2+2^2+...+2^{2018}\)

\(2A=2+2^3+2^4+...+2^{2019}\)

\(A=2A-A=1-2^{2019}\)

\(B-A=2^{2019}-\left(1-2^{2019}\right)\)

\(B-A=2^{2019}-1+2^{2019}\)

\(B-A=1\)

『Kuroba ム Tsuki Ryoo...
21 tháng 9 2023 lúc 19:58

`#3107`

\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)

Ta có:

\(A=1+2+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+2^3+...+2^{2019}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)

\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)

\(A=2^{2019}-1\)

Vậy, \(A=2^{2019}-1\)

Ta có:

\(B-A=2^{2019}-2^{2019}+1=1\)

Vậy, `B - A = 1.`

Phạm Minh Châu
21 tháng 9 2023 lúc 19:59

A = 1 + 2 + 22 + 23 + ... + 22018

2.A = 2 + 2+ 23 + 24 + ... + 22019

A = 22019 - 1

B - A = 22019 - (22019 - 1) = 1

:)))
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 19:26

\(M=2^{2020}-2^{2020}+1=1\)

:)))
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 19:13

\(M=2^{2020}-2^{2020}+1=1\)

Nguyễn Thị Ngọc Ánh
21 tháng 11 2023 lúc 20:01

2^2018-2017=2^2=4

Đỗ Anh Thư
21 tháng 11 2023 lúc 20:09

22018 - 22017 = 22018-2017= 21 =2 

Coin Hunter
21 tháng 11 2023 lúc 20:12

22018-22017

                  Giải:

Ta có: 22018 = 22017 . 2

=> 22018 - 22017 = 22017 . 2 - 22017 = 2

??gsg
Xem chi tiết
Ng Ngọc
4 tháng 1 lúc 22:05

\(B=2^{2018}-2^{2017}-2^{2016}-2^{2015}-2^{2014}\)

\(=>2B=2^{2019}-2^{2018}-2^{2017}-2^{2016}-2^{2015}\)

\(=>2B+B=2^{2019}-2^{2014}\)

\(=>B=\dfrac{2^{2019}-2^{2014}}{3}\)

nguyênduytan
Xem chi tiết
Võ Ngọc Phương
4 tháng 10 2023 lúc 19:29

Đề bài yêu cầu gì vậy bạn? Rút gọn ạ?

chuche
4 tháng 10 2023 lúc 19:30

`@` Đặt `A=2^1+2^2+2^3+...+2^2017`

`=>2A=2(2^1+2^2+2^3+...+2^2017)`

`=>2A=2^2+2^3+...+2^2018`

`=>2A-A=(2^2+2^3+...+2^2018)-(2^1+2^2+...+2^2017)`

`=>A=2^2018-2`

nguyễn tiến hoàng
4 tháng 10 2023 lúc 19:55

cau nay de

Hoshimiya Ichigo
Xem chi tiết
Lê Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 21:37

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

Trần Hà Phong
3 tháng 5 2022 lúc 20:07

2/3+3/4+...=2+1/2

Xem chi tiết
🙂T😃r😄a😆n😂g🤣
17 tháng 4 2021 lúc 20:59

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 20:59

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

🙂T😃r😄a😆n😂g🤣
17 tháng 4 2021 lúc 21:00

undefined

Xem chi tiết