Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Trọng Tiến
Xem chi tiết
Thiên An
7 tháng 7 2017 lúc 21:55

Ta có  \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\)  \(a+b+c=0\)  hoặc  \(a^2+b^2+c^2-ab-bc-ca=0\)

Giả sử  \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)  a = b hoặc b = c hoặc c = a

Mà a, b, c đôi một khác nhau (vô lí) => a + b + c = 0

Do đó  \(\hept{\begin{cases}-c=a+b\\-b=a+c\\-a=b+c\end{cases}}\)  \(\Leftrightarrow\)   \(\hept{\begin{cases}c^2=a^2+2ab+b^2\\b^2=a^2+2ac+c^2\\a^2=b^2+2bc+c^2\end{cases}}\)

Hay  \(P=\frac{ab^2}{a^2+b^2-a^2-2ab-b^2}+\frac{bc^2}{b^2+c^2-b^2-2bc-c^2}+\frac{ca^2}{c^2+a^2-c^2-2ca-a^2}\)

\(=\frac{ab^2}{-2ab}+\frac{bc^2}{-2bc}+\frac{ca^2}{-2ca}=\frac{-1}{2}\left(a+b+c\right)=0\)

thánh yasuo lmht
Xem chi tiết
tran huu dinh
Xem chi tiết
Đặng Thanh Thủy
23 tháng 6 2017 lúc 22:33

\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình

lutufine 159732486
Xem chi tiết
Fairy Tail
Xem chi tiết
Tiến Dũng Trương
8 tháng 3 2017 lúc 21:55

GT không hợp lí 

Theo định lí cosi 3 số

a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)

<=> a^3+b^3+c^3>=3abc

dấu"=" khi a=b=c

trái Gt a,b,c đôi một khác nhau

Fairy Tail
12 tháng 3 2017 lúc 19:45

Bạn sai rồi. Sao ngu vậy. Giải đến thế mà ko làm ra

quang tien
18 tháng 1 2022 lúc 21:06

a3 + b3 + c3 = 3abc 
<=> (a+b)3+c3-3a2b-3ab2-3abc = 0
<=> (a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c) = 0
<=> (a+b+c)[(a+b)2-(a+b)c+c2-3ab]= 0
<=> (a+b+c)[a2+b2+c2-ab-bc-ac]=0
<=> 2(a+b+c)[a2+b2+c2-ab-bc-ac]=0
<=> (a+b+c)[2a2+2b2+2c2-2ab-2bc-2ac]=0
<=> (a+b+c)[(a-b)2+(b-c)2+(a-c)2]=0
=> a+b+c=0 hoặc (a-b)2+(b-c)2+(a-c)=0
<=> a+b+c=0 hoặc a=b=c ( Mà a,b,c đổi 1 khác nhau nên TH này loại )
Ta có :  a+b+c=0
Thay -a2=-(-b-c)2=-b2-2bc-c2 ; -b2= -a2-2ac-c2 ; -c2= -a2-2ab-b2  vào B ,Ta được
=>B =  -1/2( 1/ab + 1/ac + 1/bc ) = -1/2 ( (a+b+c)/abc) 
Mà a+b+c = 0 => B=0
 

Khách vãng lai đã xóa
Nguyễn Thị Thúy Hà
Xem chi tiết
JOKER_Võ Văn Quốc
11 tháng 8 2016 lúc 9:26

Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Ta có:\(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a\cdot a^2+a\cdot a^2+a\cdot a^2}{a^3+a^3+a^3}\)\(\Rightarrow\frac{3a^3}{3a^3}=1\)

Trà My
25 tháng 10 2016 lúc 22:08

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ac}\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

<=> a = b = c

Vậy \(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)

Nguyễn Doãn Bảo
27 tháng 10 2016 lúc 22:49

có gì khó thì hỏi mình qua số điện thoại hỗ trợ

0942 754209 hoặc 0915 343532

Nguyễn Minh Phương
Xem chi tiết
tth_new
4 tháng 3 2019 lúc 8:39

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

Nguyễn Minh Phương
4 tháng 3 2019 lúc 19:46

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

tth_new
4 tháng 3 2019 lúc 20:14

Ukm,mình không để ý.Sorry bn

Công Tử Bạc Liêu
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 10 2020 lúc 14:43

a, b, c đôi một khác nhau => a ≠ b ≠ c

a3 + b3 + c3 = 3abc

<=> a3 + b3 + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

I) \(a+b+c=0\Rightarrow\hept{\begin{cases}-a=b+c\\-b=a+c\\-c=a+b\end{cases}}\)

Xét các mẫu thức ta có :

1) a2 + b2 - c2 = a2 + ( b - c )( b + c ) = a2 - a( b + c ) = a2 - ab + ac = a( a - b + c ) = a( a + b + c - 2b ) = -2ab

TT : b2 + c2 - a2 = -2bc

       c2 + a2 - b2 = -2ac

Thế vô A ta được :

\(A=\frac{-1}{2ab}+\frac{-1}{2bc}+\frac{-1}{2ac}=\frac{-c}{2abc}+\frac{-a}{2abc}+\frac{-b}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\)

II) a2 + b2 + c2 - ab - ac - ab = 0

<=> 2(a2 + b2 + c2 - ab - ac - ab) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2ab = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)( trái với đề bài )

=> A = 0

Khách vãng lai đã xóa
Ngô Hồng Thuận
Xem chi tiết
Bui cong minh
9 tháng 10 2016 lúc 22:11

ta có a^3 +b^3+c^3=3abc(quy đồng)

=> (a+b+c)1/2{(a-b)^2+(b-c)^2+(c-a)^2}=0

=> a=b=c 

còn lại bạn tự làm