S=1*2*3+2*3*5+...+n*(n+1)*(2n+1).tính tổng S
Viết chương trình tính các tổng sau: a) S=1+2+3+4+...+n b) S=1+3+5+...+n-1 c) S=2+4+6+...2n
Câu a:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n+1):
S += i
print("Tổng S =", S)
Câu b:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n, 2):
S += i
print("Tổng S =", S)
Câu c:
def calc_sum(n):
s=0
for i in range(1,n+1):
s += 2*i
return s
n = int(input("Nhập vào số n: "))
print("Tổng S=2+4+6+...2n là:",calc_sum(n))
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n+1):
S += i
print("Tổng S =", S)
Câu b:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n, 2):
S += i
print("Tổng S =", S)
Câu c:
def calc_sum(n):
s=0
for i in range(1,n+1):
s += 2*i
return s
n = int(input("Nhập vào số n: "))
print("Tổng S=2+4+6+...2n là:",calc_sum(n))
Bài 2: a) Tính tổng các số lẻ có hai chữ số b) Tính tổng các số chẵn có hai chữ số c) Tính: S = 1 + 3 + 5 +... + 2n +1 với (n € N) d) Tính: S = 2 + 4 + 6 +...+ 2n với (n € N*)
tính tổng gồm 2002 số hạng: S=1*3/3*5+2*4/5*7+...+(n-1)*(n+1)/(2n-1)*(2n+1)+...+1002*1004/1005*1007
Tính tổng
S1=1+2+3+...+N
S2=2+4+6+...+2N
S3=1+3+5+...+2n-1
\(S_1=1+2+3+...+N=\frac{N\left(N+1\right)}{2}\)
Tươn tự
S1 = \(\frac{N.\left(N+1\right)}{2}\)
S2 = 2S1 = N.(N+1)
S3 = \(\frac{\left(2n-1\right).2n.\left(2n+1\right)}{6}\)
tính tổng;
a,s=1+2+3+4+....+100
b,s=1+2+3+....+n
c,a=1+3+5+....+99
d,b=2+4+6+....+100
e,c=1+3+5+...+[2n+1][n thuộc n*]
f,d=2+4+6+...+2n
giúp tôi với
1 + 2 + 3 + ... + 100
= (100 + 1).100 : 2
= 101.50
= 5050
a) \(S=1+2+3+4+...+100\)
\(S=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)
\(S=5050\)
b) \(S=1+2+3+...+n\)
\(S=\frac{\left(n+1\right)\left[\left(n-1\right):1+1\right]}{2}\)
c) \(A=1+3+5+...+99\)
\(A=\frac{\left(99+1\right)\left[\left(99-1\right):2+1\right]}{2}\)
\(A=2500\)
1.Tìm x, biết
(1-2+3-4+... - 96 + 97 - 98 + 99).x = 2000
2. Chứng minh các số sau nguyên tố cùng nhau :
a) n và n+1
b) 2n và 2n + 3
c) n+1 và 2n + 3
3. Cho tổng sau :
S = 1+2+3+ ... + 2019 + 2020
Chứng tỏ : S \(⋮\) 5
Bài 1:
(1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000
Đặt A = 1 - 2 + 3 - 4 +...- 96 + 97 - 98 + 99
Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (99 - 1): 1 + = 99
Vì 99 : 2 = 49 dư 1
Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99
A = 1 - 2 + 3 - 4 + ... - 96 + 97 - 98 + 99
A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99
A = - 1 + (-1) + (-1) +...+ (-1) + 99
A = -1.49 + 99
A = -49 + 99
A = 50 Thay A =
Vậy 50.\(x\) = 2000
\(x\) = 2000 : 50
\(x\) = 40
2, n và n + 1
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có: n ⋮ d; n + 1 ⋮ d
⇒ n + 1 - n ⋮ d
1 ⋮ d
d = 1
Vậy ƯCLN(n +1; n) = 1 Hay n + 1; n là hai số nguyên tố cùng nhau (đpcm)
b, 2n và 2n + 3 là hai số nguyên tố cùng nhau
Gọi ƯCLN( 2n; 2n + 3) = d
⇒ 2n ⋮ d; 2n + 3 ⋮ d
⇒ 2n + 3 - 2n ⋮ d
3 ⋮ d
d = 1; 3
2n và 2n + 3 không thể là hai số cùng nhau
Câu 2: (2,0 điểm) TÍNH TỔNG
Cho tổng S = 1^2 + 3^2 + 5^2 + ... + (2n – 1)^2 với 𝑛 ∈ 𝑁.
Yêu cầu: Tính tổng S.
Dữ liệu vào: Nhập từ bàn phím số tự nhiên N (0 <n<=10000)
Kết quả: In kết quả tính được của tổng S ra màn hình.
#include <bits/stdc++.h>
using namespace std;
long long s,i,n;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++)
if (i%2==1) s=s+i*i;
cout<<s;
return 0;
}
a,Lần lượt thay a=1;2:;3........n trong hàng đẳng thức (n+!)2=n2+2n+1 rồi cộng theo vế các đẳng thức .Từ đó tính tổng S=1+2+...+n
b, Hãy tính tổng S1 =12+22+...+n2 từ (n+1)3
a,
\(2^2=\left(1+1\right)^2=1^2+2.1+1\)
\(3^2=\left(2+1\right)^2=2^2+2.2+1\)
....
\(\left(n+1\right)^2=n^2+2n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)
\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)
\(\Leftrightarrow2S=\left(n+1\right)n\)
\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)
b, Tương tự a
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
...
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)
\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)
\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)
\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)
\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Tính các tổng sau:
a) S1 = 1+a2+a4+a6+....+a2n, với ( a > hoặc = 2, n thuộc N)
b) S2 = a+a3+a5+.......+a2n+1, với (a > hoặc = 2, n thuộc N*)
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)