Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Cao Kỳ Uyên
Xem chi tiết
Phía sau một cô gái
8 tháng 3 2023 lúc 22:49

Câu a:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n+1):

     S += i

print("Tổng S =", S)

Câu b:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n, 2):

     S += i

print("Tổng S =", S)

Câu c: 

def calc_sum(n):

     s=0

     for i in range(1,n+1):

          s += 2*i

     return s

n = int(input("Nhập vào số n: "))

print("Tổng S=2+4+6+...2n là:",calc_sum(n))

 

NGUYỄN CHÍ tiến
9 tháng 3 2023 lúc 21:16

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n+1):

     S += i

print("Tổng S =", S)

Câu b:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n, 2):

     S += i

print("Tổng S =", S)

Câu c: 

def calc_sum(n):

     s=0

     for i in range(1,n+1):

          s += 2*i

     return s

n = int(input("Nhập vào số n: "))

print("Tổng S=2+4+6+...2n là:",calc_sum(n))

Lê Thiện Tuấn
Xem chi tiết
Jessica Jung
Xem chi tiết
bao than đen
Xem chi tiết
Nguyễn Ngọc Quý
21 tháng 9 2015 lúc 19:29

\(S_1=1+2+3+...+N=\frac{N\left(N+1\right)}{2}\)

Tươn tự 

Đinh Tuấn Việt
21 tháng 9 2015 lúc 19:30

S1 = \(\frac{N.\left(N+1\right)}{2}\)

S2 = 2S1 = N.(N+1)

S3 = \(\frac{\left(2n-1\right).2n.\left(2n+1\right)}{6}\)

hồ đăng quân
Xem chi tiết
võ minh anh
15 tháng 6 2018 lúc 14:29

a=5000

Umi
22 tháng 8 2018 lúc 22:08

1 + 2 + 3 + ... + 100

= (100 + 1).100 : 2

= 101.50

= 5050

l҉o҉n҉g҉ d҉z҉
5 tháng 5 2020 lúc 20:19

a) \(S=1+2+3+4+...+100\)

\(S=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)

\(S=5050\)

b) \(S=1+2+3+...+n\)

\(S=\frac{\left(n+1\right)\left[\left(n-1\right):1+1\right]}{2}\)

c) \(A=1+3+5+...+99\)

\(A=\frac{\left(99+1\right)\left[\left(99-1\right):2+1\right]}{2}\)

\(A=2500\)

Khách vãng lai đã xóa
Phuc Thao
Xem chi tiết

                          Bài 1: 

   (1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000

Đặt A = 1 - 2 + 3  - 4 +...- 96 + 97 - 98 + 99 

Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (99 - 1): 1 +  = 99

                  Vì 99 : 2 = 49 dư 1

Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99

A = 1 - 2 + 3  - 4 + ... - 96 + 97 - 98 + 99

A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99

A =   - 1 + (-1) + (-1) +...+ (-1) + 99

A = -1.49 + 99

A = -49 + 99

A = 50 Thay A = 

Vậy 50.\(x\) = 2000

            \(x\) = 2000 : 50

             \(x\) = 40

       

 

 

           

 

      

2, n và n + 1

Gọi ước chung lớn nhất của n và n + 1 là d

Ta có: n ⋮ d;  n + 1 ⋮ d 

⇒ n + 1  - n ⋮ d 

                1 ⋮ d

                d = 1

Vậy ƯCLN(n +1; n) = 1 Hay  n + 1; n là hai số nguyên tố cùng nhau (đpcm)

 

b, 2n và 2n + 3 là hai số nguyên tố cùng nhau

    Gọi ƯCLN( 2n; 2n + 3) = d

⇒ 2n ⋮ d; 2n + 3 ⋮ d

⇒ 2n + 3  - 2n ⋮ d

            3         ⋮  d

           d = 1; 3

2n và 2n + 3 không thể là hai số cùng nhau

thái jr
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 14:50

#include <bits/stdc++.h>

using namespace std;

long long s,i,n;

int main()

{

cin>>n;

s=0;

for (i=1; i<=n; i++)

if (i%2==1) s=s+i*i;

cout<<s;

return 0;

}

I love you
Xem chi tiết
KCLH Kedokatoji
13 tháng 8 2020 lúc 21:16

a,

\(2^2=\left(1+1\right)^2=1^2+2.1+1\)

\(3^2=\left(2+1\right)^2=2^2+2.2+1\)

....

\(\left(n+1\right)^2=n^2+2n+1\)

Cộng theo từng vế của các đẳng thức:

\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)

\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)

\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)

\(\Leftrightarrow2S=\left(n+1\right)n\)

\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)

b, Tương tự a

\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)

\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)

...

\(\left(n+1\right)^3=n^3+3n^2+3n+1\)

Cộng theo từng vế của các đẳng thức:

\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)

\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)

\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)

\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)

\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)

\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Khách vãng lai đã xóa
Bùi Mai Trang
Xem chi tiết
o0o I am a studious pers...
23 tháng 7 2016 lúc 21:35

\(1+a^2+a^4+a^6+.....+a^{2n}\)

\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)

\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)

\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)

\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)