cho tam giác ACD , M là trung điểm AD, MN là đg trung bình,cho đường cao AH
cm AH vuông góc MN
GIÚP MIK VS
cho tam giác ACD , M là trung điểm AD, MN là đg trung bình,cho đường cao AH
cm AH vuông góc MN
GIÚP MIK VS MIK ĐANG CẦN GẤP
Ta có:MN là đường trung bình của ΔACD
⇒MN//CD
mà AH⊥CD(đường cao AH)
⇒AH⊥MN
cho tam giác ACD , CM là trung điểm AD, MN là đg trung bình,cho đường cao AH
cm AH vuông góc MN
GIÚP MIK VS MIK ĐANG CẦN GẤP
Ta có: MN là đường trung bình
nên MN//CD
mà CD\(\perp\)AH
nên AH\(\perp\)MN
Cho tam giác ABC có 3 góc đều nhọn,AB > AC. Gọi M, N, P lần lượt là trung điểm của AB, AC , BC. Vẽ đường cao AH.
a) Cm MP = NH
b) Giả sử MH vuông góc NP. Cm MN + PH = AH
Mn làm ơn giúp vs ak...
Bạn vô câu hỏi tương tự nha , ở đó có cả phần a và phần b
Bài đó được giáo viên giải đấy
Chắc 100% lun !!!
cho tam giác ABC vuông tại A . đường cao AH , Gọi M,N lần lượt là trung điểm AH , CH . Cm
a, MN//AC và MN=1/2 AC
b. BM vuông góc AN
( K ĐC LÀM ÍNH CHẤT ĐƯỜNG TRUNG BÌNH NHA MN)
Cho tam giác ABC vuông tại A(AB<AC). Gọi M là trung điểm của BC. Vẽ MN vuông góc với AB tại N, MP vuông góc với AC tại P.
a. CM: ANMP là hình chữ nhật
b. CM: PN là đường trung bình của tam giác ABC
c. Gọi AH là đường cao của tam giác ABC. Qua A vẽ đường thẳng song song với PH cắt đường thẳng PN tại K. CM: HP=HK
cho tam giác ABC vuông tại A; đg cao AH. Dvà E lần lượt là hình chiếu của H trên AB và AC cm rằng
a) AD*AB=AH bình phương
AD*AB=AE*AC
b)gọi I là trung điểm của BC cm AI vuông góc vs DE
c)M là trung điểm của BH;N là trung điểm của CH. nhận dạng tứ giác MDEN
d)gọi O là giao điểm của AH và DE . tính tỷ số DIỆN TÍCH TAM GIÁC OMN TRÊN DIỆN TÍCH TAM GIÁC ABC
a, Xét ΔABH và ΔAHD có
Góc A chung
Góc ADH=Góc AHB=90°
=> ΔABH ~ΔAHD(g.g)
=> AH/AB=AD/AH
=> AB.AD=AH²(1)
Xét ΔAEH và ΔAHC có:
Góc A chung
Góc AEH = góc AHC
=>ΔAEH~ΔAHC(g.g)
=> AE/AH=AH/AC
=>AE.AC=AH²(2)
Từ (1);(2) => AD.AB=AE.AC(đpcm)
b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI
=> ΔAIC cân tại I
=>góc IAC =góc ICA
Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI
Mà góc BAI =góc AED(cùng phụ)
=> góc IBA=góc AED
Mà ABI+góc ACI= 90°
=> gócAED + góc IAC=90°
=> DEvuông góc vs AI
c,
mình làm câu c,d nek bạn
c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)
=> EN là đường trung tuyến ứng vs cạnh huyền
=> EN=NH=NC( vì N là trung điểm của HC)
=> \(\Delta\)ENC cân tại N(NE=NC cmt)
=> góc NEC=góc NCE(hai góc đáy) (1)
chứng minh tương tự trong \(\Delta\)BMD cân tại M
=> góc DBM=góc MDB(2)
ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ
=>góc MDB+ góc NEC(vì (1);(2)) (3)
và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)
từ (3);(4)=>góc BDM+góc ADE=90 độ
=> góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))
=> DM\(\perp\) DE (*)
và góc DEA+ góc NEC=90 độ
=> góc HDE+góc HEN= 90 độ
=> DE\(\perp\) EN (**)
từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)
d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)
=> OH=OA=OD=OE (t/c đường chéo hcn)
=> OH=OA=HA/2
ta có HM+HN=BM+NC(vì BM=MH; NH=NC)
=> MH+HN=BC/2=>MN=1/2 BC
diện tích \(\Delta\)ABC =1/2. AH. BC
diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC
Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)
=4
Mình nghĩ là làm như vậy, có gì bạn góp ý nha
cho tam giác ABC vuông tại A có AH là đường cao.
a) Kẻ HK vuông góc AB tại K. Cm: AB/HB - HC/AK =0
b)Gọi M, N lần lượt là trung điểm BC và MN cắt AH tại D. Đường thẳng vuông góc với AD tại D cắt AC tại E. Cm: ND2/DC2 (bình phương)+ ND2/ED2(bình phương) = 1
cho tam giác ABC vuông tại A đg cao AH (H thuộc BC) . M và N lần lượt là chân đg vuông góc kẻ từ H đến AB và AC
a) CMR: HM=AN
b) AH=MN
c) gọi i là dao điểm của AH và MN .CMR : IM=IN
d) nếu tam giác ABC là tam giác cân . CMR: MN sog sog BC
mình cần gấp . giúp mik vs
HM _|_ AB (gt)
AB _|_ AC do tam giác ABC vuông tại A (gt)
AN; HM phân biệt
=> AN // HM (tc)
=> góc NAH = góc AHM (slt)
xét tam giác NAH và tam giác MHA có : AH chung
góc ANH = góc AMH = 90
=> tam giác NAH = tam giác MHA (ch-gn)
=> HM = AN (đn)
b, NA = HM (câu a)
xét tam giác NAM và tam giác HMA có : AM chung
góc NAM = góc HMA = 90
=> tam giác NAM = tam giác HMA (2cgv)
=> AH = MN (đn)
c, AN // HM (câu a)
=> góc NAH = góc AHM (slt) và góc ANM = góc NMH (slt)
xét tam giác NAI và tam giác MHI có : AN = MH (câu a)
=> tam giác NAI = tam giác MHI (g-c-g)
=> NI = IM (đn)
d,
Cho tam giác ABC vuông ở A, đường cao AH. Điểm M thuộc cạnh BC. Vẽ MD vuông AB (DE thuộc AB), ME vuông AC(E thuộc AC). Gọi I là trung điểm của DE. Chứng minh rằng I nằm trên đường trung trực của AH.(Mong mn giúp mik vs!)
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: Hai đường chéo AH và DE cắt nhau tại trung điểm của mỗi đường
=>IA=IH
hay I nằm trên đường trung trực của AH