Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yuu~chan
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 22:03

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

b: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

c: Thay \(x=4-2\sqrt{3}\) vào P, ta được:

\(P=\dfrac{-3}{\sqrt{3}-1+3}=\dfrac{-3}{2+\sqrt{3}}=-6+3\sqrt{3}\)

Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 22:29

a: Để P nguyên thì \(-3⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3=3\)

hay x=0

Nguyễn Thị Nhàn
Xem chi tiết
Ngoc Anhh
14 tháng 10 2018 lúc 8:44

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)ĐKXĐ : \(x>1\)

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(A=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)\)

\(A=\frac{x+2}{\sqrt{x}}\)

Phùng Minh Quân
14 tháng 10 2018 lúc 13:11

\(a)\)\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}:\frac{1}{\sqrt{x}-1}\right)+\left(\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\right)\)

\(A=\sqrt{x}+\frac{2}{\sqrt{x}}\)

\(b)\) Áp dụng Cosi với hai số dương ta có : 

\(A=\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{2}{\sqrt{x}}}=2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}=\frac{2}{\sqrt{x}}\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTNN của \(A\) là \(2\sqrt{2}\) khi \(x=2\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 ko chắc nhé :v 

Nguyễn Tất Đạt
14 tháng 10 2018 lúc 13:14

Theo câu a) thì  \(A=\frac{x+2}{\sqrt{x}}\)

Áp dụng BĐT AM-GM cho 2 số không âm\(x+2\ge2\sqrt{2x}\)

\(\Rightarrow A\ge\frac{2\sqrt{2x}}{\sqrt{x}}=2\sqrt{2}\). Vậy Min \(A=2\sqrt{2}\). Dấu "=" xảy ra <=> \(x=2\).

HỒ THỊ THÙY LINH
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 13:35

a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi x=1/4

Pro Tí
Xem chi tiết
tuấn lê
Xem chi tiết
Nguyễn Bá Thông
Xem chi tiết
Trần Anh Tuấn
Xem chi tiết
Le Khong Bao Minh
Xem chi tiết
Cô Hoàng Huyền
19 tháng 7 2018 lúc 11:18

a) ĐKXĐ: \(x\ne9\)

\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2x+12\sqrt{x}-18-x-5\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x\sqrt{x}-3x+12\sqrt{x}-36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}-3\right)\left(x+12\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x+12}{\sqrt{x}+2}\)

b) Ta có: \(P=\frac{x+12}{\sqrt{x}+2}=\frac{x-4+16}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)

\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\)

\(\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)

P = 4 thì \(\left(\sqrt{x}+2\right)^2=16\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

Vậy GTNN của P là 4 khi x = 4.

nguyen thi mai huong
Xem chi tiết