[1-1/1+2]x[1-1/1+2+3]x...x[1-1/1+2+3+...+2020]=
1/(x+1)(x+2) +1/(x+2)(x+3) +1/(x+3)(x+4)=2019/2020
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{x+4-x-1}{\left(x+1\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}=\dfrac{2019}{2020}\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right).2019=6060\)
<=> x = - 0,208387929
P/s: Số lạ zậy?Đề sai ko
M=1+(1+2)+(1+2+3)+...+(1+2+3+...+2020)
1 x 2020+2 x 2019+3 x 2018+...+2020x1
Tính M
Ta có: 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ... + ( 1 + 2 + 3 +...+ 2020)
= ( 1 + 1 + 1 +... + 1 ) + (2 + 2 +...+ 2 ) + ( 3 + 3+...+ 3 ) + ...+ 2020
Có 2020 số 1 ; 2019 số 2 ; 2018 số 3 ;... ; 1 số 2020
= 2020 x 1 + 2019 x 2 + 2018 x 3 + ... + 2020x 1
=> \(M=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+...+2020\times1}\)
= \(\frac{1\times2020+2\times2019+...+2020\times1}{1\times2020+2\times2019+...+2020\times1}=1\)
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+....+\dfrac{1}{\left(x+2020\right)\left(x+2021\right)=1}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2020}-\dfrac{1}{x+2021}=1\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2021}=1\)
\(\Leftrightarrow\dfrac{\left(x+2021\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\dfrac{x+2021-x-1}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\dfrac{2020}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\left(x+1\right)\left(x+2021\right)=2020\)
\(\Leftrightarrow x^2+2021x+x+2021=2020\)
\(\Leftrightarrow x^2+2022x=-1\)
\(\Leftrightarrow x\left(x+2022\right)=-1\)
Đến đây bạn chia trường hợp để giaỉ ra nghiệm nguyên nhé
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)Làm nhanh và ngắn gọn nhất có thể nhé ! mình tik cho 10 tik
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)(1-1)\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right).0\)
\(M=0\)
Vì số bị trừ và số trừ gồm hai tích đảo ngược nhau nên M=0
Nếu 1/3 + 1/6 +1/10 + ...... + 1/x.(x+1) : 2 = 2019/2021
A.x = 2019/2020 B. x = 2019 C. x = 2020 D. x = 2021
thực hiện phép tính:1/x.(x+1)+1/(x+1).(x+2)+1/(x+2).(x+3)+.....+1/(x+2019).(x+2020)
A=[ 2020 x 2019 + 2019 x 2018] x [ 1 + 1/2 : 1 và 1/2 - 1 và 1/3]
\(A=\left(2020\times2019+2019\times2018\right)\times\left(1+\dfrac{1}{2}:1\dfrac{1}{2}-1\dfrac{1}{3}\right)\)
\(A=\left[2019\times\left(2020+2018\right)\right]\times\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)\)
\(A=4038\times2019\times\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(A=4038\times2019\times0\)
\(A=0\)
tìm x:
1/1*2+1/2*3+...+1/x*(x+1)=2020/2021
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{2020}{2021}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2020}{2021}\)
\\(1-\frac{1}{x+1}=\frac{2020}{2021}\)
\(\frac{1}{x+1}=1-\frac{2020}{2021}\)
\(\frac{1}{x+1}=\frac{1}{2021}\)
\(\Rightarrow x+1=2021\)
\(x=2021-1\)
\(x=2020\)
đk: \(x\ne\left\{0;-1\right\}\)
Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2020}{2021}\)
\(\Leftrightarrow\frac{x}{x+1}=\frac{2020}{2021}\)
\(\Leftrightarrow2021x=2020x+2020\)
\(\Rightarrow x=2020\)
2/5 nhân 1/7 + 2/7 nhân 2/5
x + 1/2 nhân 1/3 = 3/4
(1-1/2) nhân (1 - 1/3) nhân ( 1 - 1/4) nhân ... nhân (1 - 1/2020) + x =1/2
\(\dfrac{2}{5}\times\dfrac{1}{7}+\dfrac{2}{7}\times\dfrac{2}{5}\)
\(=\dfrac{2}{5}\times\left(\dfrac{1}{7}+\dfrac{2}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{3}{7}\)
\(=\dfrac{6}{35}\)
\(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
\(x=\dfrac{9}{12}-\dfrac{2}{12}\)
\(x=\dfrac{7}{12}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2020}\right)+x=\dfrac{1}{2}\)
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2019}{2020}+x=\dfrac{1}{2}\)
\(\dfrac{1}{2020}+x=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{1}{2020}\)
\(x=\dfrac{1010}{2020}-\dfrac{1}{2020}\)
\(x=\dfrac{1009}{2020}\)
\(\dfrac{2}{5}\times\dfrac{1}{7}+\dfrac{2}{7}\times\dfrac{2}{5}\)
\(=\dfrac{2}{5}\times\left(\dfrac{1}{7}+\dfrac{2}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{3}{7}\)
\(=\dfrac{6}{35}\)
\(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}-x\)
\(\Rightarrow\dfrac{3}{4}-x=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2020}\right)+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2019}{2020}+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1\times2\times3\times4\times...\times2019}{2\times3\times4\times5\times...\times2020}+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2020}+x=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}-\dfrac{1}{2020}=\dfrac{1009}{2020}\)