tìm a có nghĩa khi:
\(\sqrt{a-2\sqrt{a-1}}\)
MỌI NGƯỜI GIÚP E VỚI!!!
Tìm giá trị nhỏ nhất của
a)E=\(\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}\)khi \(x\ge9\)
b)F=\(\dfrac{3x+\sqrt{x}+1}{\sqrt{x}}\) khi x≥\(\dfrac{1}{2}\)
Mọi người giúp em với e cần gấp ạ
Có bài ngược của bài này, bạn đăng và đã có lời giải thì chỉ cần đảo lại đáp án là được.
\(E=\sqrt{x}+\dfrac{4}{\sqrt{x}}-2=\dfrac{4\sqrt{x}}{9}+\dfrac{4}{\sqrt{x}}+\dfrac{5}{9}.\sqrt{x}-2\)
\(E\ge2\sqrt{\dfrac{16\sqrt{x}}{9\sqrt{x}}}+\dfrac{5}{9}.\sqrt{9}-2=\dfrac{7}{3}\)
\(E_{min}=\dfrac{7}{3}\) khi \(x=9\)
\(F=3\sqrt{x}+\dfrac{1}{\sqrt{x}}+1=2\sqrt{x}+\dfrac{1}{\sqrt{x}}+\sqrt{x}+1\)
\(F\ge2\sqrt{\dfrac{2\sqrt{x}}{\sqrt{x}}}+1.\sqrt{\dfrac{1}{2}}+1=\dfrac{2+5\sqrt{2}}{2}\)
\(F_{min}=\dfrac{2+5\sqrt{2}}{2}\) khi \(x=\dfrac{1}{2}\)
Tìm điều kiện xác định của a để các căn sau có nghĩa:
1.
\(\sqrt{\dfrac{-a}{3}}\)
2. \(\sqrt{\dfrac{a^2+1}{1-3a}}\)
3. \(\sqrt{a^2-6a+10}\)
4. \(\sqrt{\dfrac{a-1}{a+2}}\)
Làm ơn giúp mình với. Cảm ơn mọi người nhiều❤
1)Để căn có nghĩa \(\Leftrightarrow\dfrac{-a}{3}\ge0\Leftrightarrow a\le0\)
Vậy...
2)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2+1}{1-3a}\ge0\\1-3a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1-3a>0\left(vìa^2+1>0\right)\\1-3a\ne0\end{matrix}\right.\)
\(\Leftrightarrow1-3a>0\Leftrightarrow3a< 1\Leftrightarrow a< \dfrac{1}{3}\)
Vậy...
3)Để căn có nghĩa
\(\Leftrightarrow a^2-6a+10\ge0\Leftrightarrow\left(a^2-6a+9\right)+1\ge0\Leftrightarrow\left(a-3\right)^2+1\ge0\left(lđ;\forall a\right)\)
Vậy căn luôn có nghĩa với mọi a
4)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a-1}{a+2}\ge0\\a+2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+2< 0\end{matrix}\right.\end{matrix}\right.\\a+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge1\\a>-2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le1\\a< -2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -2\end{matrix}\right.\)
Vậy...
Cho biểu thức \(y=\left(\frac{1}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\frac{1}{\sqrt{1+x^2}}+1\right)\)
a) Tìm x để A có nghĩa
b) rút gon A
c) Tìm a với \(x=\frac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp mình nhea .Cảm ơn
Bài 1:Tìm x để bt có nghĩa
a)\(\sqrt{\left(x-1\right)\left(x-3\right)}\)
b) \(\sqrt{\frac{1-x}{x+2}}\)
Bài 2:Rút gọn
a) A=\(\sqrt{\left(\sqrt{3}-1\right)^2-\sqrt{3}}\)d) D=\(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
b) B= \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)c) C=\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
Huhu mọi người giúp e với:(((
Bài 2 :
a) Sửa đề :
\(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(A=\sqrt{3}-1-\sqrt{3}\)
\(A=-1\)
b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(B=\sqrt{2}+1-\sqrt{2}+1\)
\(B=2\)
c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=2-\sqrt{3}+2+\sqrt{3}\)
\(C=4\)
d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(D=4+\sqrt{7}-\sqrt{7}\)
\(D=4\)
Bài 1 :
a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)
TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)
Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)
b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa
\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)
TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)
TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)
Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)
Ngoc Minh
Câu 1b) Chú ý điều kiện x khác -2 nữa em ơi!
Thường thì sẽ giải như này:
TH1: \(\hept{\begin{cases}1-x\ge0\\x+2>0\end{cases}}\)....
Th2: \(\hept{\begin{cases}1-x\le0\\x+2< 0\end{cases}}\).....
Chú ý nhé!
Mọi người giải giúp e với :< E cảm ơn ạ
Bài 1 : Cho M = \(\frac{2\sqrt[]{a}}{\sqrt[]{a}+1}\)
Tìm a để M > 4
cho biểu thức \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x\sqrt{x}-2x+\sqrt{x}}\)
a) Tìm x để A có nghĩa và rút gọn A
b) Tính giá trị của A khi \(x=8-2\sqrt{7}\)
c) Tìm số tự nhiên x sao cho \(\sqrt{x}\)là số nguyên và \(\frac{11}{A}\)là số nguyên
d) Tìm giá trị lớn nhất của biểu thức B= A-x
Mọi người giúp em với ạ :<
(\(\dfrac{\sqrt{a}}{\sqrt{a}-1}\)-\(\dfrac{2\sqrt{a}}{a-\sqrt{a}}\)):\(\dfrac{\sqrt{a}+1}{a-1}\) mọi người giúp em với ạ
ĐKXĐ: \(a>0;a\ne1\)
\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\dfrac{a-1}{\sqrt{a}+1}\)
\(=\left[\dfrac{\sqrt{a}.\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\dfrac{a-1}{\sqrt{a}+1}\)
\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right].\dfrac{a-1}{\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}-2}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\)
\(=\sqrt{a}-2\)
mọi người giúp mk với, mk đang cần gấp. Tối nay mk phải nộp rồi
B3: Cho biểu thức: C= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a. Hãy rút gọn C
b. Tìm a để C ≥ 1/6
Sửa đề: \(C=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(a,C=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\left(a>0;a\ne1;a\ne4\right)\\ C=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,C\ge\dfrac{1}{6}\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}\ge0\Leftrightarrow\dfrac{\sqrt{a}-4}{6\sqrt{a}}\ge0\\ \Leftrightarrow\sqrt{a}-4\ge0\left(6\sqrt{a}>0\right)\\ \Leftrightarrow a\ge16\)
em có bài toán mong nhờ mọi người giải hộ
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}....\)
a) Rút gọn
b) tính A khi x=9
c)tìm x để A=1/2
d)tìm x nguyên để A nguyên
e)tìm các giá trị x để A < 1
f) tìm min A