Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Anh Ngọc
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Trần Thanh Phương
23 tháng 8 2019 lúc 15:04

fix lai chut...

...

Ta có : \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)

\(\Leftrightarrow x^2-2x+4=4x+8\)

\(\Leftrightarrow x^2-6x-4=0\)

\(\Delta=6^2-4\cdot\left(-4\right)=52\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{6+\sqrt{52}}{2}=3+\sqrt{13}\\x=\frac{6-\sqrt{52}}{2}=3-\sqrt{13}\end{matrix}\right.\)

Vậy....

Trần Thanh Phương
23 tháng 8 2019 lúc 15:00

ĐK: \(x\ge-2\)

\(2\left(x^2+2\right)=3\left(\sqrt{x^3+8}+2x\right)\)

\(\Leftrightarrow2x^2+4=3\sqrt{x^3+8}+6x\)

\(\Leftrightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Leftrightarrow2\left(x^2-3x+2\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x+4}=a\\\sqrt{x+2}=b\end{matrix}\right.\)( \(a,b\ge0\) )

Ta có : \(a^2-b^2=x^2-2x+4-x-2=x^2-3x+2\)

\(pt\Leftrightarrow2\left(a^2-b^2\right)=3ab\)

\(\Leftrightarrow2a^2-3ab-2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\left(chon\right)\\2a=-b\left(loai\right)\end{matrix}\right.\)

Ta có \(a=2b\Leftrightarrow\sqrt{x^2-2x+4}=2\sqrt{x+2}\)

\(\Leftrightarrow x^2-4x+4=4x+8\)

\(\Leftrightarrow x^2-8x-4=0\)

\(\Delta=8^2-4\cdot\left(-4\right)=80\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8+\sqrt{80}}{2}\\x=\frac{8-\sqrt{80}}{2}\end{matrix}\right.\)( thỏa )

Vậy...

Lê Thu Hiền
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
oooloo
Xem chi tiết
phantuananh
Xem chi tiết
Nhật Minh
22 tháng 6 2016 lúc 19:00

\(\frac{\left(x+4\right)\left(x-2\right)}{x^2-2x+3}=\left(x+1\right)\frac{x+2-4}{\sqrt{x+2}+2}\)

\(\left(x-2\right)\left(\frac{x+4}{x^2-2x+3}-\frac{x+1}{\sqrt{x+2}+2}\right)=0\)

+ x=2

+ chiu kho lam cai con lai

Ly Po
Xem chi tiết
Akai Haruma
26 tháng 11 2018 lúc 23:30

Lời giải:
ĐK: \(-2\leq x\leq 4\)

Ta có: \(x^2-2x+8-4\sqrt{(4-x)(x+2)}=0\)

\(\Leftrightarrow x^2-2x+8-4\sqrt{2x+8-x^2}=0\)

\(\Leftrightarrow 16-(2x-x^2+8)-4\sqrt{2x+8-x^2}=0\)

Đặt \(\sqrt{2x+8-x^2}=t\)

\(\Rightarrow 16-t^2-4t=0\)

\(\Rightarrow t=-2\pm 2\sqrt{5}\). Vì \(t\geq 0\Rightarrow t=-2+2\sqrt{5}\)

\(\Rightarrow t^2=2x+8-x^2=24-8\sqrt{5}\)

\(\Leftrightarrow x^2-2x+16-8\sqrt{5}=0\)

\(\Rightarrow x=1\pm \sqrt{8\sqrt{5}-15}\) (đều thỏa mãn)

Vậy............

Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi