Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sơn Nguyễn
Xem chi tiết
Phạm Tuấn Đạt
12 tháng 10 2018 lúc 22:15

1;\(A=x^3+y^3+z^3-3xyz\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(A=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(A=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

2;Nếu A = 0

Điều ngược lại đúng khi x^2+y^2+z^2-xy-yz-xz khác 0

Nguyễn Xuân Anh
12 tháng 10 2018 lúc 22:16

Ta đi chứng minh A phụ thuộc vào x+y+z

\(A=x^3+y^3+z^3-3xyz.\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Mà x^2+y^2+z^2-xy-yz-xz>0

nên  x+y+z =0 thì A=0

TRẦN MINH NGỌC
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2017 lúc 14:45

ILoveMath
Xem chi tiết
Phạm Thành Long
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 20:56

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Leftrightarrow x=y=z\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2018 lúc 10:13

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu a ≥ 0, b  ≥  0, c  ≥  0 thì :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đặng Khánh Duy
Xem chi tiết
Thu Thao
23 tháng 9 2020 lúc 20:01
https://i.imgur.com/qQtX9Pr.jpg
Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 10 2017 lúc 4:06

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu x ≥ 0, y  ≥  0, z  ≥  0 thì:

x + y + z  ≥  0

x - y 2 + y - z 2 + z - x 2 ≥ 0

Suy ra:

x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z

Hay:  x 3 + y 3 + z 3 3 ≥ x y z