Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jenny phạm
Xem chi tiết
Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Đặng Quốc Khánh
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 8 2021 lúc 9:26

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

phamthiminhanh
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Akai Haruma
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Akai Haruma
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

Đinh Trọng Khoa
Xem chi tiết
Lê Văn Hoàng
Xem chi tiết
Nguyễn Quốc Gia Huy
19 tháng 8 2017 lúc 16:28

ĐKXĐ: \(-\sqrt{5}\le x\le\sqrt{5}\). Suy ra:

\(-2\sqrt{5}\le2x\le2\sqrt{5}\)

mà \(0\le\sqrt{5-x^2}\ge\sqrt{5}\)

Suy ra: \(-2\sqrt{5}\le2x+\sqrt{5-x^2}\ge3\sqrt{5}\)

Vậy min của A là \(-2\sqrt{5}\)khi x = \(-\sqrt{5}\)

Đinh Trọng Khoa
Xem chi tiết
Nguyễn Minh Đăng
12 tháng 10 2020 lúc 12:38

Bài này tìm được min thôi

Ta có: \(2x^2+x=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)-\frac{1}{8}=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x+\frac{1}{4}\right)^2=0\Rightarrow x=-\frac{1}{4}\)

Vậy Min = -1/8 khi x = -1/4

Khách vãng lai đã xóa
Ngô Thành Chung
Xem chi tiết
Nguyen Minh Vu
Xem chi tiết
o0o I am a studious pers...
15 tháng 7 2016 lúc 21:20

\(A=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2.x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\right)\)

\(=-\left(\left(x-\frac{3}{2}\right)+\frac{7}{4}\right)\)

\(=-\frac{7}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{-7}{4}\)

Vậy \(MAXA=\frac{-7}{4}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Nguyễn Hoàng Tiến
15 tháng 7 2016 lúc 22:28

\(B=2\left(x^2-\frac{3}{2}x+1\right)=2\left(x^2-2\times x\times\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+1\right)=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

MIN B = 7/8 <=> x=3/4