Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Xem chi tiết
Yến Hải
18 tháng 8 2019 lúc 21:47

đề bài là gì vậy bạn???

Tìm x,y

Tìm nhiệm nguyên mình mới vào đội tuyển toán 7 mình không biết

Nguyễn Ngọc k10
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 5 2023 lúc 15:14

a: =6xy+xy=7xy

b: =-9xy^2

c: =-x^2y^3z^4

d: =-4x^2y

e: =-30x^2y

f: =6x^2y

Nguyễn Hoàng Tứ
Xem chi tiết
Nguyen Nguyen
10 tháng 7 2023 lúc 13:01

0,2:x=1,03+3,97

 

 

Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 19:54

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

chuthithuhuyen
Xem chi tiết
I don
13 tháng 3 2018 lúc 12:49

A)\(5xyz.4x^2y^2.\left(-2x^3y\right)=\left(5.4.\left(-2\right)\right).\left(xx^2x^3\right).\left(yy^2y\right)=\left(-40\right)x^6y^4\)

- BẬC : 10

- HỆ SỐ: -40 

B) \(-xy.\left(\frac{1}{2}x^3y^4\right).\left(\frac{-4}{7}x^2y^5\right)=\left(\frac{1}{2}.\frac{-4}{7}.\left(-1\right)\right).\left(xx^3x^2\right).\left(y^4y^5y\right)=\frac{2}{7}x^6y^{10}\)

- BẬC : 16

- HỆ SỐ: 2/7

C) \(\frac{5}{3}x^2y^4.\left(\frac{-6}{5}xy^3\right).\left(-xy\right)=\left(\frac{5}{3}.\frac{-6}{5}.\left(-1\right)\right).\left(x^2xx\right).\left(y^4y^3y\right)=2x^4y^8\)

- BẬC : 12

- HỆ SỐ : 2

D) \(\left(\frac{-1}{3}x^2y^5\right).\left(\frac{3}{4}xy\right).5x=\left(\frac{-1}{3}.\frac{3}{4}.5\right).\left(x^2xx\right).\left(y^5y\right)=\frac{-5}{4}x^4y^6\)

- BẬC : 10

- HỆ SỐ : -5 /4

CHÚC BN HỌC TỐT!!

chuthithuhuyen
13 tháng 3 2018 lúc 12:54

cảm on

chuthithuhuyen
Xem chi tiết
Minh Nguyễn Cao
13 tháng 3 2018 lúc 20:03

a,A=3x^2y^4+5x^3+xy-3x^2y^4

   A=5x+xy

=> bậc của A là 3

b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4

  => bậc của B là 8

c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4

   C = 5x4y-7x3y(-2xy2) - 5x4y+x3 -14x4y4 

   C =  5x4y2 + 14x4y4 -5x4y+x3 -14x4y4 

   C = x3 

=> Bậc của C là 3

chuthithuhuyen
13 tháng 3 2018 lúc 20:26

cám ơn

Truc Nguyen
Xem chi tiết

Bài 1: Tìm x, y nguyên biết :

a) 4x + 2xy + y = 7

   => 2.x(y-2)+(y-2)=5

    => ( y-2)(2x+1)= 5

    Ta có bảng sau:

     

2x+1-5-115
y-2-1-551
x-3-102
y1-373

 

Điều kiện: t/m

Vậy:....

phần b và c tương tự

Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 14:25

b: =>x(3-y)+2y-6=-2

=>-x(y-3)+2(y-3)=-2

=>(y-3)(x-2)=2

=>\(\left(x-2;y-3\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;5\right);\left(4;4\right);\left(1;1\right);\left(0;2\right)\right\}\)

c: =>x(3y+2)+y+2/3=-4+2/3=-10/3

=>(y+2/3)(3x+1)=-10/3

=>(3x+1)(3y+2)=-10

=>\(\left(3x+1;3y+2\right)\in\left\{\left(1;-10\right);\left(10;-1\right);\left(-2;5\right);\left(-5;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;-4\right);\left(3;-1\right);\left(-1;1\right);\left(-2;0\right)\right\}\)

Duong Thi Nhuong
Xem chi tiết
Toan Nguyen
Xem chi tiết

B = 2\(x^2\) - 4\(x\) - 8

B = 2(\(x^2\) - 2\(x\) + 4)  - 16

B = 2(\(x-2\))2 - 16 

Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ 2(\(x-2\))2 ≥ 0 ∀ \(x\)

⇒ 2(\(x-2\)) - 16 ≥ -16 ∀ \(x\)

Dấu bằng xảy ra khi  (\(x-2\))2 = 0 ⇒ \(x-2=0\) ⇒ \(x=2\)

Vậy Bmin = -16 khi \(x=2\)

Tìm min của C biết:

C = \(x^2\) - 2\(xy\) + 2y2 + 2\(x\) - 10y + 17

C = (\(x^2\) - 2\(xy\) + y2) + 2(\(x\) - y) + y2 - 8y + 16 + 1

C = (\(x\) - y)2 + 2(\(x\) - y) + 1  + (y2 - 8y + 16) 

C = (\(x-y+1\))2 + (y - 4)2 

Vì (\(x\) - y + 1)2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0 ∀ y

Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x-y+1=0\\y=4\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-4+1=0\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-1+4\\y=4\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy Cmin = 0 khi (\(x;y\)) = (3; 4)

 

 

D = \(x^2\) - \(xy\) + y2 - 2\(x\) - 2y

D=[\(x^2\)-2\(x\)\(\dfrac{y}{2}\)+(\(\dfrac{y}{2}\))2]-(2\(x\)-2\(\dfrac{y}{2}\)) +1 +(\(\dfrac{3}{4}\)y2-2.\(\dfrac{\sqrt{3}}{2}\)y .\(\sqrt{3}\) +3) - 4

D = (\(x-\dfrac{y}{2}\))2 - 2(\(x-\dfrac{y}{2}\))+ 1 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4

D = (\(x-\dfrac{y}{2}\) - 1)2 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4

Vì (\(x-\dfrac{y}{2}\) - 1)2 ≥  0 ∀ \(x\);y và (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 ≥ 0 ∀ y 

Vậy (\(x-\dfrac{y}{2}\) - 1)2 + (\(\dfrac{\sqrt{3}}{2}\)y - \(\sqrt{3}\))2 - 4 ≥ - 4 ∀ \(x;y\)

Dấu bằng xảy ra khi: \(\left\{{}\begin{matrix}x-\dfrac{y}{2}-1=0\\\dfrac{\sqrt{3}}{2}y-\sqrt{3}=0\end{matrix}\right.\)

      ⇒ \(\left\{{}\begin{matrix}x-\dfrac{y}{2}-1=0\\\sqrt{3}.\left(\dfrac{1}{2}y-1\right)=0\end{matrix}\right.\)

  ⇒ \(\left\{{}\begin{matrix}x=1+\dfrac{1}{2}y\\\dfrac{1}{2}y=1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=1+1\\y=1:\dfrac{1}{2}\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Vậy Dmin = - 4 khi (\(x;y\)) =(2; 2)