Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vũ Luật
Xem chi tiết
10. Minh Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 10:25

\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AK là phân giác

=>BK/AB=CK/AC

=>BK/3=CK/5=16/8=2

=>BK=6cm

Captain America
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2022 lúc 20:06

Bài 1: 

a: Xét tứ giác ABCD có góc B+góc D=180 độ

nên ABCD là tứ giác nội tiếp

=>góc BAC=góc BDC và góc DAC=góc DBC

mà góc CBD=góc CDB

nên góc BAC=góc DAC

hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC

=>góc BCA=góc CAD

=>BC//AD

=>ABCD là hình thang

mà góc B=góc BCD

nên ABCD là hình thang cân

Trần Bảo Sơn
Xem chi tiết
minhbappe1472005
Xem chi tiết
Vũ Quang Hưng
Xem chi tiết
Nguyễn Phương Uyên
28 tháng 10 2019 lúc 19:05

a, xét tứ giác AEHF có :

góc BAC = 90 do tam giác ABC vuông tại A (gt)

góc HEA = 90 do HE _|_ AB (Gt)

góc HFA = 90 do HF _|_ AC (gt)

=> tứ giác AEHF là hình chữ nhật (dh)

Khách vãng lai đã xóa
Nhan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 15:44

a: Xét tứ giác EAFH có 

\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: EAFH là hình chữ nhật

Keisha
26 tháng 9 2021 lúc 15:48

undefined

Kinomoto Sakura
26 tháng 9 2021 lúc 16:02

undefined

a) Xét tứ giác AEHF có: 

A = E = F= 90o

⇒ AEHF là hình chữ nhật (dấu hiệu nhận biết) 

b) Gọi M = AH∩EF

           K = AI∩EF

Vì ∠K = H = 90o 

A chung

⇒ ΔAKM và ΔAHI đồng dạng (g.g) 

AMK = AIH (hai góc tương ứng)

Vì tứ giác AEHF là hình chữ nhật (cmt)

⇒ Giao điểm của hai đường chéo là trung điểm của mỗi đường và hai đường chéo bằng nhau

⇒ 

Tình Nguyễn Thị
Xem chi tiết
Kiệt Nguyễn
28 tháng 9 2020 lúc 12:18

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

Khách vãng lai đã xóa
Lê Quang Hiếu
28 tháng 9 2020 lúc 18:57

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)

Khách vãng lai đã xóa
Trần Bảo Khang
Xem chi tiết
Hắc_Thiên_Tỉ
22 tháng 11 2019 lúc 22:03

k đúng cho tôi đi

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
22 tháng 11 2019 lúc 22:16

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM

Khách vãng lai đã xóa