Phân tích đa thức thành nhân tử
x2 - 2014xy - 2016xz + (20152 - 1)yz
Phân tích đa thức thành nhân tử:
x^2-2014xy-2016xz+(2015^2-1)yz
Phân tích đa thức thành nhân tử
x2 - 2014xy - 2016xz + (20152 - 1)yz
Lời giải :
\(x^2-2014xy-2016xz+\left(2015^2-1\right)yz\)
\(=x^2-2014xy-2016xz+\left(2015-1\right)\left(2015+1\right)yz\)
\(=x^2-2014xy-2016xz+2014\cdot2016\cdot yz\)
\(=x\left(x-2014y\right)-2016z\left(x-2014y\right)\)
\(=\left(x-2014y\right)\left(x-2016z\right)\)
Phân tích các đa thức sau thành nhân tử:
1/ (a - b)(a2 + 3ab + b2) + (a + b)3 + ab(b - a)
2/ x2 - 2014xy - 2016xz + (20152 - 1)yz
1/ \(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)=\left(a^2+2ab+b^2+ab\right)\left(a-b\right)+\left(a+b\right)^3+ab\left(b-a\right)\)= \(\left(a^2+2ab+b^2\right)\left(a-b\right)+\left(a+b\right)ab+\left(a-b\right)^3-ab\left(a-b\right)\)
= \(\left(a+b\right)^2\left(a-b\right)+\left(a+b\right)^3\)
= \(\left(a+b\right)^2\left(a-b+a+b\right)=2a\left(a+b\right)^2\)
k mình nhé!
Phân tích đa thức thành nhân tử:
x^2-2014xy-2016xz+(2015^2-1)yz
x^2-2014xy-2016xz+(2015^2-1)yz
phân tích đa thức thành nhân tử 2(x-z)+xy-yz
\(2\left(x-z\right)+xy-yz\)
\(=2\left(x-z\right)+y\left(z-z\right)\)
\(=\left(x-z\right)\left(2+y\right)\)
phân tích đa thức thành nhân tử:
xy+yz-2*(x+2)
phân tích đa thức thành nhân tử 2(xy+yz+zx)-x^2-y^2-z^2
\(2\left(xy+yz+zx\right)-x^2-y^2-z^2\)
\(2xy+2yz+2zx-x^2-y^2-z^2\)
\(-\left(x^2+y^2+z^2-2xy-2yz-2xz\right)\)
\(-\left(x+y+z\right)^2\)
phân tích đa thức thành nhân tử (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+zx)^2