Tìm x , y là số nguyên biết :
a, x . y .z = -7
b, xy + y - 5 = 0
Tìm x ; y thuộc z .Biết :
a.(x+2) * (y-5) = -7
b.(x-1) * (xy-3) = -5
a. (x + 2) * (y - 5) = -7
<=> (y - 5) = -\(\dfrac{7}{x+2}\)
x ∈ Z => 7 chia hết cho (x + 2)
=> x = 5
<=> y -5 = -1
y = -1 + 5
y = 4
Vậy x = 5 và y = 4
b. (x-1) * (xy-3) = -5
<=> (xy-3) = -\(\dfrac{5}{x-1}\)
x ∈ Z => 5 chia hết cho x-1
=> x =6 ; -4; 2
TH1 : x = 6 => 6y-3
<=> 6y - 3 = -\(\dfrac{5}{6-1}\)
=> 6y - 3 = -1
6y = -1+3
6y = 2
y = 6:2
y = 3
TH2 : x = -4
<=> -4y - 3 = - \(\dfrac{5}{-4-1}\)
<=> -4y - 3 = 1
-4y = 1 + 3
-4y = 4
y = 4 : -4
y = -1
TH3 : x = 2
<=> 2y - 3 = -\(\dfrac{5}{2-1}\)
<=> 2y - 3 = -5
2y = -5 + 3
2y = -2
y = -2 : 2
y = -1
Vậy x =2 và y = -1 hoặc x = -4 và y = -1
a,Tìm x thuộc z/|x|<18
b,Tìm xy thuộc z/|x-3|+|y-5|=0
c,Tìm các cặp số nguyên (xy)/|x|+|y|=4
d,Tìm các cặp số nguyên (xy)/|x|+|y|<hoặc=3
Câu 1: Tìm số nguyên x để biểu thức sau là số nguyên: A=\(\frac{3x-2}{x+3}\)
Câu 2: Tìm x;y biết:
a) x-y=xy=x:y(y khác 0)
b) x(x+y+z)=3; y(x+y+z)=9; z(x+y+z)=4
GIÚP MÌNH VỚI! THANK!!!!!!!!!!!!
Tìm các số nguyên x,y biết:
a)2x(2y+3)–(2y+3)=7
b)x(y+4)–3(y+4)=19
c)xy–5x+2y–10=31
a) pt <=> (2x-1)(2y+3)=7
TH1: 2x-1=7 và 2y+3=1
<=> x = 4 và y = -1
TH2: 2x - 1 = -7 và 2y + 3 = -1
<=> x = -3 và y = -2
TH3: 2x-1=1 và 2y+3=7
<=> x = 1 và y=2
TH4: 2x-1=-1 và 2y+3=-7
<=> x=0 và y=-5
b) pt <=> (x-3)(y+4)=19
TH1: x - 3=1 và y+4=19
<=> x=4 và y=15
TH2: x-3=-1 và y+4=-19
<=> x=2 và y=-23
TH3: x-3=19 và y+4=1
<=> x=22 và y=-3
TH4: x-3=-19 và y+4=-1
<=> x=-16 và y=-5
c) pt <=> (y-5)(x+2)=31
TH1: y-5=31 và x+2=1
<=> y=36 và x=-1
TH2: y-5=-31 và x+2=-1
<=> y=-26 và x=-3
TH3: y-5=1 và x+2=31
<=> y=6 và x=29
Th4: y-5=-1 và x+2=-31
<=> y=4 và x=-33
a) tìm hai số x và y biết x:2 = y: (-5) và x-y =-7
b) tìm ba số x,y,z biết x phần 2 = y phần 3 ,y phần 4 và z phần 5 và x+y-z=10
cảm ơn trước ak
a) Ta có: \(x:2=y:\left(-5\right)\)
nên \(\dfrac{x}{2}=\dfrac{y}{-5}\)
mà x-y=-7
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{y}{-5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(-2;5)
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{8}=\dfrac{y}{12}\)(1)
Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)
nên \(\dfrac{y}{12}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
mà x+y-z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Vậy: (x,y,z)=(16;24;30)
b)
Do đó ta có
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
1) tìm các số nguyên x,y,z biết :
a)xy-x-y = -1
b) xy-2x+y = 5
c) (x^2+xy)+9xy)=4
d)xy+y =5
a) xy-x-y= -1
=> x.(y-1)-y= -1
=>x.(y-1)-y+1= -1+1
=>x.(y-1)-(y-1)=0
=>(y-1).(x-1)=0
=> +) y-1=0 => y=1
Hoặc
+) x-1=0 => x=1
d,xy+y=5
=xy+y1=5
=y[x+1]=5
Suy ra y và x+1 thuộc ước của 5
tíc dùm nha
tíc
bằng 831 giúp mình giải bài này
Xy6+xy
1) tìm các số nguyên x,y,z biết :
a) xy-x-y = -1
b) xy-2x+y = 5
c) (x^2+xy)+9xy=4
d) xy+y =5
a Ta có
xy -x-y=-1
=> x(y-1)-(y-1)=0
=> (y-1)(x-1)=0
=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên
+ x-1=0 và y-1 thỏa mãn với mọi số nguyên
Cho x, y, z là số nguyên biết x + y +z = 1
Tìm Min: A = xy/x + yz/x + xz/y
ko tin bạn đọc lại đề xem,nó vòng lặp sai mà,cái đầu tiên đó
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)