parabol có đỉnh (0, 3) và cắt trục hoành tại điểm có hoành độ bằng 2
Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
Nếu parabol ( P ) y = a x 2 + b x + c a ≠ 0 có đỉnh nằm phía trên trục hoành và cắt trục hoành tại hai điểm thì:
A. a > 0 b 2 - 4 a c > 0
B. a < 0 b 2 - 4 a c > 0
C. a > 0 b 2 - 4 a c = 0
D. a < 0 b 2 - 4 a c < 0
Vì parabol cắt trục hoành tại hai điểm nên phương trình a x 2 + b x + c = 0 có 2 nghiệm hay Δ = b 2 − 4 a c > 0
Đỉnh của parabol là I − b 2 a ; − Δ 4 a . Điểm này nằm phía trên trục hoành nên tung độ điểm này lớn hơn 0, tức là − Δ 4 a > 0 . Mà Δ > 0 ⇒ a < 0
Chọn B.
Xác định parabol y= ax2 + bx + c, (a#0), biết rằng đỉnh của parabol đó có tung độ bằng -25, đồng thời parabol đó cắt trục hoành tại hai điểm A(-4;0) và B(6;0).
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
cho biết parabol P y=a^2+bx+c có đỉnh I(2,-3) và cắt trục hoành có hoành độ bằng 5 tìm giá trị a
Tìm Parabol (P): y=ax2+bx+c cắt trục hoành Ox tại 2 điểm có hoành độ lần lượt là -1 và 2, cắt trục tung Oy tại điểm có tung độ bằng -2.
Tìm parabol (P): y = ax2 + 3x – 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
A. y = x2 + 3x – 2.
B. y = -x2 + x – 2.
C. y = -x2 + 3x – 3.
D. y = -x2 + 3x – 2.
Vì parabol (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên A(2; 0) thuộc (P).
Thay x = 0; y = 2 vào phương trình parabol ta được 0 = 4a + 6 – 2 hay a = -1
Chọn D.
Xác định a, b, c biết parabol y = ax2 + bx + c Có đỉnh I(-1 ; -4) và cắt trục tung tại điểm có hoành độ =-3
giúp mình với
Sửa đề: cắt trục tung tại điểm có tung độ bằng -3
Thay x=0 và y=-3 vào (P), ta được:
\(a\cdot0^2+b\cdot0+c=-3\)
=>0+0+c=-3
=>c=-3
vậy: (P): \(y=ax^2+bx-3\)
Tọa độ đỉnh là I(-1;-4) nên ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{b^2-4\cdot a\cdot\left(-3\right)}{4a}=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=2a\\\dfrac{b^2+12a}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\left(2a\right)^2+12a=16a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=2a\\4a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\4a\left(a-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=2a\\\left[{}\begin{matrix}a=0\left(loại\right)\\a-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Xác định parabol (P): y = a x 2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là −1 và 2, cắt trục Oy tại điểm có tung độ bằng −2.
A. Y = −2 x 2 + x − 2.
B. Y = − x 2 + x − 2.
C. Y = 1 2 x 2 + x − 2.
D. Y = x 2 – x − 2.
Xác định parabol: P : y = a x 2 + b x + c biết (P) có giá trị lớn nhất bằng 3 tại x=2 và cắt trục Ox tại điểm có hoành độ bằng 1
A. y = - x 2 + 4 x - 3
B. y = x 2 - 4 x + 7
C. y = 2 x 2 - 12 x + 20
D. y = - 3 x 2 + 12 x - 9
Tìm parabol (P): y = a x 2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
A. Y = x 2 + 3x − 2.
B. Y = − x 2 + x − 2.
C. Y = − x 2 + 3x − 3.
A. Y = − x 2 + 3x − 2.