Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Ngọc Phan Trần
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Bảo Ngọc Phan Trần
Xem chi tiết
Trần Thanh Phương
19 tháng 8 2019 lúc 12:37

Lời giải :

\(x^2-2014xy-2016xz+\left(2015^2-1\right)yz\)

\(=x^2-2014xy-2016xz+\left(2015-1\right)\left(2015+1\right)yz\)

\(=x^2-2014xy-2016xz+2014\cdot2016\cdot yz\)

\(=x\left(x-2014y\right)-2016z\left(x-2014y\right)\)

\(=\left(x-2014y\right)\left(x-2016z\right)\)

Bảo Ngọc Phan Trần
Xem chi tiết
Lê Thanh Nhàn
19 tháng 8 2019 lúc 11:39

x2 - 2014xy - 2016xz + (20152 - 1)yz

= x2 - 2014xy - 2016xz + (2015 - 1)(2015 + 1)yz

= x2 - 2014xy - 2016xz + 2014.2016.yz

= (x2 - 2014xy) - (2016xz - 2014.2016.yz)

= x(x - 2014y) - 2016z(x - 2014y)

= (x - 2014y)(x - 2016z)

#TT

Hoang Kim Thanh
Xem chi tiết
Trần Mỹ Linh
16 tháng 7 2018 lúc 19:06

1/ \(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)=\left(a^2+2ab+b^2+ab\right)\left(a-b\right)+\left(a+b\right)^3+ab\left(b-a\right)\)\(\left(a^2+2ab+b^2\right)\left(a-b\right)+\left(a+b\right)ab+\left(a-b\right)^3-ab\left(a-b\right)\)

\(\left(a+b\right)^2\left(a-b\right)+\left(a+b\right)^3\)

\(\left(a+b\right)^2\left(a-b+a+b\right)=2a\left(a+b\right)^2\)

k mình nhé!

Nguyễn Khả Hân
Xem chi tiết
alibaba nguyễn
18 tháng 8 2016 lúc 22:13
Nếu còn cần bài giải thì inbox mình
Nguyễn Khả Hân
18 tháng 8 2016 lúc 20:04

Giup mình với nka^^

nguyennamson
12 tháng 2 2020 lúc 22:48

giúp củ cải

Khách vãng lai đã xóa
Vũ Anh Quân
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 19:52

Có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)

Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)

\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)

\(\Leftrightarrow3x^{2015}=3^{2016}\)

\(\Leftrightarrow x=3\)

Vậy \(x=y=z=3\)

Nguyên
Xem chi tiết
Nguyên
23 tháng 2 2016 lúc 14:32

ai đó làm giúp mình , mình tích cho

Hoàng Phúc
23 tháng 2 2016 lúc 14:51

nhân 2 vế cho 2

=>2x2+2y2+2z2=2xy+2yz+2zx

=>2x2+2y2+2z2-2xy-2yz-2zx=0

=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0

=>(x-y)2+(y-z)2+(z-x)2=0

mà (x-y)2 >= 0 với mọi x,y

(y-z)2 >= 0 với mọi y,z

(z-x)2 >=0 với mọi z,x

=>(x-y)2+(y-z)2+(z-x)2 >= 0

mà theo đề:(x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

=>x=y

   y=z

   z=x

hay x=y=z

do đó x2015+y2015+z2015=32016

<=>x2015+x2015+x2015=32016

<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015

Vậy x=y=z=2015

Nguyen Duc Minh
23 tháng 2 2016 lúc 14:53

cau a ban de o hang dang thuc (x-y-z)^2 di

Hoàng Bảo Trân
Xem chi tiết
Trần Thanh Phương
4 tháng 11 2018 lúc 6:43

\(x^2+y^2+z^2=xy+yz+xz\)

\(2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì mũ chẵn luôn lớn hơn hoặc bằng 0

\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow}}x=y=z\)

\(\Rightarrow x^{2015}+y^{2015}+z^{2015}=x^{2015}+x^{2015}+x^{2015}=3x^{2015}\)

\(\Rightarrow3x^{2015}=3^{2016}\)

\(\Rightarrow x^{2015}=3^{2015}\)

\(\Rightarrow x=3\)

Vậy \(x=y=z=3\)