Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhan Thanh
Xem chi tiết
Dưa Hấu
12 tháng 7 2021 lúc 20:38

undefined

Linh
Xem chi tiết
Meta.vn
Xem chi tiết
Nguyen My Van
23 tháng 5 2022 lúc 11:54

Có \(2x^2+2y^2=5xy\)

\(\Leftrightarrow2x^2-2y^2-5xy=0\)

\(\Leftrightarrow2x^2-4xy-xy+2y^2=0\)

\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=0\\2x-y=0\end{matrix}\right.\)

TH1: Với \(x-2y=0\) hay \(x=2y\) thì:

\(E=\dfrac{2y+y}{2y-y}=\dfrac{3y}{y}=3\) ( loại do \(0< x< y\) nên \(E=\dfrac{x+y}{x-y}< 0\) )

TH2: Với \(2x-y=0\)  hay \(2x=y\) thì:

\(E=\dfrac{x+2x}{x-2x}=\dfrac{3x}{-x}=-3\left(tm\right)\)

Vậy \(E=-3\)

 

Đức Anh officall
Xem chi tiết
Nguyễn Linh Chi
23 tháng 6 2020 lúc 0:57

Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y

Giải: 

 Cho 2x2+2y2=5xy và 0<x<y. => \(\frac{x}{y}< 1\)

Chia cả hai vế cho y^2 ta có: \(2\left(\frac{x}{y}\right)^2-5\frac{x}{y}+2=0\) (1)

Đặt: t = x/y ta có: 0 < t < 1 

(1) trở thành: \(2t^2-5t+2=0\)

<=> \(\left(2t^2-4t\right)+\left(-t+2\right)=0\)

<=> \(2t\left(t-2\right)-\left(t-2\right)=0\)

<=> \(\left(2t-1\right)\left(t-2\right)=0\)

<=> t = 1/2 ( tm) 

Hoặc  t = 2 loại 

Với t = 1/2 ta có: x/y = 1/2 

<=> y = 2x 

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

Khách vãng lai đã xóa
Jerry Con Cuồng
Xem chi tiết
cat
Xem chi tiết

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y).(2x-y)=0

<=> (x-2y)=0 hoặc 2x-y=0

Nếu x-2y=0 =>x=2y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3

Nếu 2x-y=0 =>2x=y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3

Khách vãng lai đã xóa
Nguyễn Phương Uyên
7 tháng 3 2020 lúc 21:11

2x^2 + 2y^2 = 5xy

<=> 2x^2 + 2y^2 - 5xy = 0

<=> 2x^2  - 4xy + 2y^2 - xy  = 0

<=> 2x(x - 2y) - y(x - 2y) = 0

<=> (2x - y)(x - 2y) = 0

<=> 2x = y hoặc x = 2y

thay vào là xong

Khách vãng lai đã xóa
IS
7 tháng 3 2020 lúc 21:16

\(x>y>0=>\frac{x+y}{x-y}>0\)

=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)

=>\(E=3\)

Khách vãng lai đã xóa
nguyễn vân
Xem chi tiết
lô
Xem chi tiết
Dương ♡
25 tháng 3 2020 lúc 20:10

a) Hai mặt phẳng cắt nhau, vì 1: 2: (-1) ≠ 2: 3: (-7)

b) Hai mặt phẳng cắt nhau, vì: 1: (-2): 1 ≠ 2: (-1): 4

c) Hai mặt phẳng song song, vì: 1/2=1/2=1/2 ≠ -1/3

d) Hai mạt phẳng cắt nhau, vì: 3: (-2): 3 ≠ 9: (-6): (-9)

e) Hai mặt phẳng trung nhau, vì: 1/10=-1/(-10)=2/20=-4/(-40).

           #rin

Khách vãng lai đã xóa
le van thang
Xem chi tiết
luyen hong dung
19 tháng 4 2018 lúc 16:23

ta có\(2x^2+2y^2=5xy\)

\(\Leftrightarrow2x^2-5xy+2y^2=0\)\(\Leftrightarrow\left(x-4y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4y\\2x=y\end{cases}}\)

\(0< x< y\)\(\Rightarrow x=4y\)là vô lý

\(\Rightarrow2x=y^{\left(1\right)}\)

Thế (1)vào biểu thức E ta được:

\(E=\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

Vậy biểu thức E có giá trị là 3

Xong rồi đấy nhớ k cho mình nhé!