cho 2 số x, y thỏa mãn 3x=2y và x≠0, y≠0 rút gọn biểu thức P =\(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)
giúp e với ạ
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}4x^3+y^2-2y+5=0\\x^2+x^2y^2-4y+3=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{2x^2}{x^2+1}=y\\\dfrac{3y^3}{y^4+y^2+1}=z\\\dfrac{4z^4}{z^6+z^4+z^2+1}=x\end{matrix}\right.\)
Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTLN của
\(P=\dfrac{x}{\left(2x+y+z\right)^2}+\dfrac{y}{\left(2y+x+z\right)^2}+\dfrac{z}{\left(2z+y+x\right)^2}\)
Cho x, y, z là ba số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
S = \(\dfrac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\dfrac{\sqrt{y^2-yz+z^2}}{2x+y+z}+\dfrac{\sqrt{z^2-zx+x^2}}{x+2y+z}\)
Cho x,y,z dương thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\) . Chứng minh rằng \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2+x^2+3}}\) ≤ \(\dfrac{\sqrt{6}}{2}\)
giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\dfrac{x}{x+2}\right)^2+\left(\dfrac{y}{y+2}\right)^2=1\end{matrix}\right.\)
cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2\ge\dfrac{1}{3}\)
chứng minh \(\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\ge\dfrac{1}{30}\)
Giải phương trình và hệ phương trình:
1) \(-2x^2+x+1-2\sqrt{x^2+x+1}=0\)
2) \(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
1. Giải hpt\(\left\{{}\begin{matrix}\dfrac{3y}{x-1}+\dfrac{2x}{y+1}=3\\\dfrac{2y}{x-1}-\dfrac{5x}{y+1}=2\end{matrix}\right.\)
2.Cho PT : x2-6x+2m-3=0
-Tìm m để PT có nghiệm x1,x2 thỏa : (x12-5x1+2m-4)(x22-5x2+2m-4)=2