E= \(\frac{x+y}{x-y}\)
=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\)\(\frac{x^2+y^2+2xy}{x^2+y^2-2xy}\)= \(\frac{2x^2+2y^2+4xy}{2x^2+2y^2-4xy}\)
=> E^2 = \(\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}\)= 9
=> E = 3
E= \(\frac{x+y}{x-y}\)
=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\)\(\frac{x^2+y^2+2xy}{x^2+y^2-2xy}\)= \(\frac{2x^2+2y^2+4xy}{2x^2+2y^2-4xy}\)
=> E^2 = \(\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}\)= 9
=> E = 3
Cho 2x2+2y2=5xy và 0<x<y. Tính E = x+y/x-y
Bài 1: cho x+y=15 và x^2+y^2=70 tính x^4-y^4
Bài 2: cho 0<x<y và 2x^2+2y^2=5xy
Tính A=x+y/x-y
Pls nhanh dùm e cái
Cho x>y>0 và 2x2+2y2=5xy. Tính : \(E=\frac{x+y}{x-y}\).
cho x>y>0 và 2x2 +2y2 = 5xy.Tính E= \(\frac{x+y}{x-y}\)
Cho \(2x^2+2y^2=5xy\)và 0<x<y
Tính giá trị của \(E=\frac{x+y}{x-y}\)
cho x>y>0 va 2x2+2y2=5xy
tinh gia tri bieu thuc E=x+y/x-y
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
cho x,y>0 và x+y=2 tìm gtnn của (2x+1/x)2+(2y+1/y)2+2001
mik cảm ơn ạ
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)