Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Minh Hằng
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
Thân Dương Phong
30 tháng 6 2020 lúc 21:55

vân chi
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 19:39

Câu 1 :

\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)

\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)

\(=3x^2+12x-63-3x-12=3x^2+9x-75\)

Thay x = 1/2 vào ta được 

\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)

Câu 2 : 

\(5x^2+5xy+5x=5x\left(x+y+1\right)\)

Thay x = 60 ; y = 50 ta được 

\(300\left(60+50+1\right)=33300\)

Câu 3 : 

\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)

Thay x = 10 ; y  = 1/2 ta được 

\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)

Nguyễn Lê Phước Thịnh
11 tháng 2 2022 lúc 19:37

1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)

\(=3x^2+12x-63+x^2+2\)

\(=4x^2+12x-61\)

\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)

2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)

3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)

nguyễn Thị Bích Ngọc
Xem chi tiết
Akai Haruma
24 tháng 6 2020 lúc 11:47

Lời giải:

$M=4x^2(x^2+y^2)+2y^2(x^2+y^2)+20y^2$

$=4x^2.10+2y^2.10+20y^2$

$=40x^2+20y^2+20y^2=40x^2+40y^2=40(x^2+y^2)=40.10=400$

Cỏ dại
Xem chi tiết
Không Tên
28 tháng 3 2018 lúc 22:15

         \(x^4+4x^3y+6x^2y^2+4xy^3+y^4-x-y-10\)

\(=\left(x^4+2x^3y+x^2y^2\right)+\left(2x^3y+4x^2y^2+2xy^3\right)+\left(x^2y^2+2xy^3+y^4\right)-\left(x+y\right)-10\)

\(=x^2\left(x^2+2xy+y^2\right)+2xy\left(x^2+2xy+y^2\right)+y^2\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)

\(=\left(x^2+2xy+y^2\right)\left(x^2+2xy+y^2\right)-\left(x+y\right)-10\)

\(=\left(x+y\right)^2\left(x+y\right)^2-\left(x+y\right)-10\)

\(=\left(x+y\right)^4-\left(x+y\right)-10\)

\(=2^4-2-10\) \(=4\)

Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 9 2021 lúc 15:40

\(a^2+b^2+6ab+2=2a+3b\Rightarrow\left(a+b\right)^2-3\left(a+b\right)+2=-a\left(4b+1\right)\le0\)

\(\Rightarrow\left(a+b-1\right)\left(a+b-2\right)\le0\Rightarrow1\le a+b\le2\)

\(a^2+b^2+6ab+2=2a+3b\Rightarrow4ab=-\left(a+b\right)^2+2a+3b-2\)

\(-P=\dfrac{6a+5b+4ab+7}{a+b+1}=\dfrac{6a+5a+7-\left(a+b\right)^2+2a+3b-2}{a+b+1}\)

\(=\dfrac{-\left(a+b\right)^2+8\left(a+b\right)+5}{a+b+1}\)

Tới đây có thể giải theo lớp 9 (tách thành tích hoặc bình phương) hoặc làm theo lớp 12 (khảo sát hàm \(f\left(x\right)=\dfrac{-x^2+8x+5}{x+1}\) trên \(\left[1;2\right]\)). Cả 2 việc đều dễ dàng cả

\(-P=6-\dfrac{\left(x-1\right)^2}{x+1}=\dfrac{17}{3}+\dfrac{\left(3x-1\right)\left(2-x\right)}{3\left(x+1\right)}\)

Trần Hải Việt シ)
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2024 lúc 22:17

a: C=A-B

\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)

\(=x^3+3x^2y+3xy^2+y^3\)

D=A+B

\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)

\(=9x^3-9x^2y+5xy^2+y^3\)

bậc của C là 3

bậc của D là 3

b: Thay x=0 và y=-2 vào D, ta được:

\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)

\(=0-0+0-8=-8\)

c: Thay x=-1 và y=-1 vào C, ta được:

\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)

=-8

ACE
Xem chi tiết