Cho \(b+2ab=1\ \)Chứng minh \(\frac{a}{a+1}+\frac{2b}{b+1\ }+\frac{1}{2ab}+\frac{1}{b}\ge5\)
Cho \(b+2ab=1\) Chứng minh \(\frac{a}{a+1}+\frac{2b}{b+1\ }+\frac{1}{2ab}+\frac{1}{b}\ge5\)
Cho \(b+2ab=1\) chứng minh \(\frac{a}{a+1}+\frac{2b}{b+1}+\frac{1}{2ab}+\frac{1}{b}\ge5\)
AI làm bài này đc k ạ
Bài 1: Cho a, b cùng dấu. Chứng minh rằng: \(\left(\frac{a^2+b^2}{2}\right)^3\le\left(\frac{a^3+b^3}{2}\right)^2\)
Bài 2: Cho \(a^2+b^2\ne0\). Chứng minh rằng: \(\frac{2ab}{a^2+4b^2}+\frac{b^2}{3a^2+2b^2}\le\frac{3}{5}\)
Bài 3: Cho a, b > 0. Chứng minh rằng: \(\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\ge5\left(\frac{1}{a}+\frac{1}{b}\right)\)
Bài 4: Cho a, b>0. Chứng minh rằng: \(\frac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
Cho a,b>0 và a + 2b = 1. Chứng minh rằng: \(\frac{1}{8ab}+\frac{2ab}{a^2+4b^2}\ge\frac{3}{2}\)
\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)
áp dụng bđt AM-GM , a,b> 0
\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)
Cho a,b,c thực dương thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\)
Chứng minh rằng : \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)
Ta sẽ chứng minh :
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) với x, y > 0
Thật vậy : \(x+y+z\ge3\sqrt[3]{xyz}\)( bđt Cô - si )
Và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\) ( bđt Cô - si )
\(\Rightarrow x+y+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( Dấu " = " \(\Leftrightarrow x=y=z\) )
Ta có :
\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
( Dấu " = " xay ra khi a=b)
Tương tự ta cũng có :
\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\) ( Dấu " = " xảy ra khi b=c)
\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\) ( Dấu " = " xay ra khi c = a )
\(VT=\sum_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)
\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu " = " xay ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!
\(\frac{1}{\sqrt{4a^2+2ab+b^2+a^2+b^2}}\le\frac{1}{\sqrt{4a^2+2ab+b^2+2ab}}=\frac{1}{\sqrt{\left(2a+b\right)^2}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow VT\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
bài 1 : chứng minh đẳng thức sau : a, \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\) b, \(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\)↑1↑
Cho a, b, c là các số thực dương thoả mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\). Chứng minh rằng: \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)
\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế với vế:
\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)
Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)
Bài 1: Cho a,b dương và \(2a+3b=ab\) Chứng minh rằng
\(a+b\ge5+2\sqrt{6}\)
Bài 2: Cho a,b dương và \(a+b=ab\) Tìm giá trị lớn nhất của
\(S=\frac{1}{a}+\frac{2}{a+b}\)
Bài 3: Cho a,b là các số dương. Tìm giá trị bé nhất của
\(S=\frac{a^2+b^2}{b^2+2ab}+\frac{b^2}{a^2+2b^2}\)
Bài 4: Cho ba số dương a,b,c thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=9\)Chứng minh rằng
\(\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\le\sqrt{3}\)
Bài 5: Cho ba số thực không âm x,y,z thỏa mãn \(x+y+z\ge3\)Chứng minh rằng
\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
CMR \(\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)
ĐK: a;b>0
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)
đpcm