Thu gọn : ( x - 1 )^2 ( x + 2 ) - ( x - 2 )(x^2 + 2x + 4 )
Thu gọn :
`(x-2)^2+2(x-2)(2x+2)+4(x+1)^2`
\(=\left(x-2\right)^2+2\left(x-2\right)\left(2x+2\right)+\left(2x+2\right)^2\)
\(=\left(x-2+2x+2\right)^2=\left(3x\right)^2=9x^2\)
Thu gọn các biểu thức sau:
A=(x-1)^3-x(x-2)^2+1
B=(-x-2)^3+(2x-4)(x^2+2x+4)- x^2(x-6)
A = (x - 1)3 - x(x - 2)2 + 1
A = (x - 1)(x2 - 2x + 1) - x(x - 2)2 + 1
A = x(x2 - 2x + 1) - (x2 - 2x + 1) - x(x - 2)2 + 1
A = x3 - 2x2 + x - (x2 - 2x + 1) - x(x2 - 2x.2 + 22) + 1
A = x3 - 2x2 + x - (x2 - 2x + 1) - (x3 - 4x2 + 4x) + 1
A = x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x + 1
A = (x3 - x3) + (-2x2 - x2 + 4x2) + (x + 2x - 4x) + (-1 + 1)
A = x2 - x
B = (-x - 2)3 + (2x - 4)(x2 + 2x + 4) - x2(x - 6)
B = (-x - 2)[(-x2) - 2.(-x).2 + 22] + (2x - 4)(x2 + 2x + 4) - x2(x - 6)
B = -x[(-x)2 - 2.(-x).2 + 22] - 2[(-x)2 - 2.(-x).2 + 22] + (2x - 4)(x2 + 2x + 4) - x2(x - 6)
B = -(x3 + 4x2 + 4x) - (2x2 + 4x + 8) + 2x(x2 + 2x + 4) - 4(x2 + 2x + 4) - x2(x - 6)
B = -(x3 + 4x2 - 4x) - (2x2 + 4x + 8) + 2x3 + 4x2 + 8x - (x2 + 8x + 16) - (x3 - 6x2)
B = -x3 - 4x2 + 4x - 2x2 - 4x - 8 + 2x3 + 4x2 + 8x - x2 - 8x - 16 - x3 + 6x2
B = (-x3 + 2x3 - x3) + (-4x2 - 2x2 + 4x2 - x2 + 6x2) + (-4x - 8x + 8x - 8x) + (-8 - 16)
B = -12x - 24
Thu gọn biểu thức:
a) (x^2-1)(x+2)-(x-2)(x^2+2x+4)
b) (x-2)(x+3) - (x-5)(x+5) - (2x-3)
c) (3x-1)^2 + (2x+1)^2 - 2(3x-1)(2x+1)
thu gọn biểu thức sau:
(x^2-1) (x+2) - (x-2) (x^2+2x+4)
Cho f(x) -3x^2-2x+x^2(x-4)+2x^3+4x^2-5;
p(x)= 2x^4+2x^2(x+3)-2x^3(x+1)-5x^2-1 .
Thu gọn và tìm nghiệm của đa thức f(x); p(x)
Thu gọn các biểu thức : a) 6x^2y(3xy-2xy^2+y) b) (-3x+2)(5x^2-1/3x+4) c) (x+1)(x-2)+x(3-x) d) (2x+3)^2-(2x-5)(2x+5)-(x-1)(x^12+12)
a: =18x^3y^2-12x^3y^3+6x^2y^2
b: (-3x+2)(5x^2-1/3x+4)
=-12x^3+x^2-12x+10x^2-2/3x+8
=-12x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)
=12x+34-x^3-12x+x^2+12
=-x^3+x^2+46
Đa thức P(x) = 2x^4 + 3x^2 − x^3 − 3x^4 − x^2 − 2x + 1 sau khi được thu gọn và sắp xếp theo bậc giảm dần của biến là:
A. P(x) = x^4 − x^3 + 2x^2 − 2x + 1
B.P(x) = −x^4 − x^3 + 3x^2 − 2x + 1
C. P(x) = −x^4 − x^3 + 2x^2 − 2x + 1
D. P(x) = x^4 − x^3 − 2x^2 − 2x + 1
thu gọn f(x)=-2x^4+3x^3-4x+2x^4-x^2-3x^3-x+1
F(\(x\)) = -2\(x\)4 + 3\(x^3\) - 4\(x\) + 2\(x^4\) - \(x^2\) - 3\(x^3\) - \(x\) + 1
F(\(x\)) = ( -2\(x^4\)+2\(x^4\)) + (3\(x^3\) - 3\(x^3\)) -(4\(x\) + \(x\)) + 1
F(\(x\)) = 0 + 0 - 5\(x\) + 1
F(\(x\)) = - 5\(x\) + 1
\(f\left(x\right)=-2x^4+3x^3-4x+2x^4-x^2-3x^3-x+1\)
\(f\left(x\right)=-2x^4+2x^4+3x^3-3x^3-4x-x-x^2+1\)
\(f\left(x\right)=-5x-x^2+1\)
thu gọn đa thức 2x^3+2x^5-5x^7-7x^2-11x^3+2, 5x^4-9+4, 2x^2+1, 5x^4+13x^8