Giải pt
\(x^4-5x^3-8x^2\) \(-5x+1\)
Giải pt
\(x^4\)\(-5x^3-8x^2-5x+1\) \(=0\)
giai pt
\(2\sqrt{-x^4+8x^3-21x^2+8x}=x^3+5x^2+5x+3\)
Giải pt
(4x-3)^2-(2x+1)^2=0
3x-12-5x×(x-4)=0
(8x+2)×(x^2+5)×(x^2-4)=0
(4x - 3)2 - (2x + 1)2 = 0
\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0
\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
3x - 12 - 5x(x - 4) = 0
\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0
\(\Leftrightarrow\) -5x2 + 23x - 12 = 0
\(\Leftrightarrow\) 5x2 - 23x + 12 = 0
\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0
\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0
\(\Leftrightarrow\) (x - 4)(5x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
(8x + 2)(x2 + 5)(x2 - 4) = 0
\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0
Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x
\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)
b) Ta có: \(3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)
c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)
mà \(2>0\)
và \(x^2+5>0\forall x\)
nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)
giải dùm mình mấy pt này vs !! mình chưa hc mấy pt bậc này mà thầy cho bt về nhà !! các bạn giúp mình vs !!!!
1/ \(x^3-3x^2+2=0\)
2/ \(2x^4-5x^3+6x^2-5x+2=0\)
3/ \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
4/ \(\left(x+1\right)^4+\left(x+3\right)^4=2\)
5/ \(x^5-5x^4+8x^3+8x^2-5x+1=0\)
2) pt đề bài cho=0
<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0
<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
Từ 1 => x=1
từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)
=\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x
Nên pt 2 cô nghiệm
Vậy pt đề cho có nghiệm là 1
1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)
3/ x(x + 3)(x + 1)(x + 2) = 24
=> (x2 + 3x)(x2 + 3x + 2) = 24
Đặt a = x2 + 3x ta được pt: a(a + 2) = 24 => a2 + 2a - 24 = 0 => a = 4 hoặc a = -6
Với a = 4 => x2 + 3x = 4 => x2 + 3x - 4 = 0 => x = 1 hoặc a = -4Với a = -6 => x2 + 3x = -6 => x2 + 3x + 6 = 0 , mà x2 + 3x + 6 > 0 => vô nghiệmVậy x = 1 , x = -4
4/ (x + 1)4 + (x + 3)4 = 2
Đặt a = x + 2 ta được: (a - 1)4 + (a + 1)4 = 2
\(\Rightarrow\left[\left(a-1\right)^2+\left(a+1\right)^2\right]^2-2\left(a-1\right)^2\left(a+1\right)^2=2\)
\(\Rightarrow\left[\left(a-1+a+1\right)^2-2\left(a-1\right)\left(a+1\right)\right]^2-2\left(a^2-1\right)^2=0\)
\(\Rightarrow\left[\left(2a\right)^2-2\left(a^2-1\right)\right]^2-2\left(a^2-1\right)^2=0\)
\(\Rightarrow\left[4a^2-2\left(a^2-1\right)+\sqrt{2}\left(a^2-1\right)\right]\left[4a^2-2\left(a^2-1\right)-\sqrt{2}\left(a^2-1\right)\right]=0\)
\(\Rightarrow\left[\left(2+\sqrt{2}\right)a^2+2-\sqrt{2}\right]\left[\left(2-\sqrt{2}\right)a^2+2+\sqrt{2}\right]=0\)
Tới đây bạn giải ra a rồi tính ra x nha
Gọi x1 , x2 là 2 nghiệm của PT x2 - 2x - 5 = 0. Không giải PT, hãy tính giá trị của biểu thức B = x13 - 2x22 - 5x1 + 8x2 + 2008
giai cac pt sau:
2x^2-5x+2=0
3x^2-7x-20=0
x^3+x^2+4=0
x^3-5x^2+8x-4=0
a) 2x2-4x-x+2=0
=> 2x(x-2)-(x-2)=0
=> (2x-1)(x-2)=0
=> \(\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
b) 3x2-12x+5x-20=0
=> 3x(x-4)+5.(x-4)=0
=> (x-4)(3x+5)=0
=> \(\left[{}\begin{matrix}x-4=0\\3x+5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)
c)x3+2x2-x2-2x+2x+4=0
=> x2(x+2)-x(x+2)+2(x+2)=0
=>(x2-x+2)(x+2)=0
=> x=-2( vi x2-x+2>0)
d) x3-x2-4x2+4x+4x-4=0
=> x2(x-1)-4x(x-1)+4(x-1)=0
=>(x-1)(x2-4x+4)=0
=> \(\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2x2-5x+2=0
⇔2x2-x-4x+2=0
⇔x(2x-1)-2(2x-1)=0
⇔(x-2)(2x-1)=0
⇔\(\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=2\\2x=1\Leftrightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
sậy S=\(\left\{2;\dfrac{1}{2}\right\}\)
x3+x2+4=0
⇔x3+2x2-x2-2x+2x+4=0
⇔(x3+2x2)-(x2+2x)+(2x+4)=0
⇔x2(x+2)-x(x+2)+2(x+2)=0
⇔(x+2)(x2-x+2)=0
⇔x+2=0 và x2-x+2=0
⇔x=-2 và \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\)(vô lý)
vậy S={-2}
Giải pt
(2x^2+x-2013)^2+4(x^2-5x-2012)^2=4(2x^2+x-2013)(x^2-5x-2012
giải hệ pt \(\hept{\begin{cases}x^3-5x=y^3-5y\\x^8+y^4=1\end{cases}}\)
\(\hept{\begin{cases}x^3-5x=y^3-5y\left(1\right)\\x^8+y^4=1\left(2\right)\end{cases}}\)
Từ (2) ta có: \(x^8+y^4=1\)
\(\Rightarrow|x|,|y|\le1\)
\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-5\right)=0\)
Ta có: \(x^2+xy+y^2\le3< 5\)
\(\Rightarrow x=y\)
Thế vô giải tiếp là xong.
a) 32 − 16x 36 x − 2 = 16 2 − x 36 x − 2 = − 16 2 − x 36 2 − x = − 16 36 = − 4 9 b) x − 8x 3x − 12x + 12 = x x − 8 3 x − 4x + 4 = x x − 2 x + 2x + 4 3 x − 2 = x x + 2x + 4 3 x − 2 = x + 2x + 4x 3x − 6 c) 3x + 3x 7x + 14x + 7 = 3x x + 1 7 x + 2x + 1 = 3x x + 1 7 x + 1 = 3x 7 x + 1 = 3x 7x + 7 d) x − 10x + 9 x − 5x + 4 = x − x − 9x + 9 x − x − 4x + 4 = x x − 1 − 9 x − 1 x x − 1 − 4 x − 1 = x − 9 x − 1 x − 4 x − 1 = x − 3 x + 3 x − 2 x + 2 e) · x − x + 2x − x + 1 x + x + x + 1 = x − x + x + x − x + 1 x x + 1 + x + 1 = x x − x + 1 + x − x + 1 x + 1 x + 1 = x + 1 x − x + 1 x + 1 x − x + 1 = x + 1 x + 1 = x + 1 x + 2x + 1 ( ) ( ) ( ) ( ) ( ) 2 4 ( 2 ) ( 3 ) ( ) 2 ( ) ( 2 ) ( ) ( 2 ) 3 2 2 2 ( 2 ) ( ) ( ) 2 ( ) ( ) 4 2 4 2 4 2 2 4 2 2 2( 2 ) ( 2 ) 2( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 ) ( )( ) ( )( ) 4 3 4 3 2 3 ( ) ( ) 4 3 2 2 ( 3 )( ) 2
k cho mk nha
Giải PT
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(x^4-8x^2+x+12=0\)
\(x^4+5x^3-10x^2+10x+4=0\)
\(\left(6x^2-5x+1\right)\left(x^2-5x+6\right)=4x^2\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)