Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khanh Hoa
Xem chi tiết
Nguyễn Mạnh Hùng
Xem chi tiết
Hatake Kakashi
Xem chi tiết
Điền Nguyễn Vy Anh
Xem chi tiết
Nguyễn Phương Uyên
4 tháng 2 2020 lúc 16:27

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

Khách vãng lai đã xóa
Nguyễn Phương Uyên
4 tháng 2 2020 lúc 16:05

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b, 

Khách vãng lai đã xóa
Điền Nguyễn Vy Anh
4 tháng 2 2020 lúc 16:33

câu a là sao vậy bn???

Khách vãng lai đã xóa
Sơn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 22:46

a: Xét ΔCDB có

CA là trung tuyến

CG=2/3CA

=>G là trọng tâm

=>E là trung điểm của BC

b: Xét tứ giác DFCE có

DF//CE

DE//CF

=>DFCE là hình bình hành

=>DC cắt FE tại trung điểm của mỗi đường

=>M là trung điểm của BC và EF

c: G là trọng tâm của ΔDBC

M là trung điểm của DC

=>B,G,M thẳng hàng

nguyễn khánh ngọc
Xem chi tiết
Lê Thị Hồng Vân
13 tháng 5 2018 lúc 20:32

Ta có : \(\left\{{}\begin{matrix}AB//ED\\BC//EK\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK//ED\\BD//EK\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}BK=ED\\BD=EK\end{matrix}\right.\left(T/chấtđoạnchắn\right)\)(1)

Vì AB//ED\(\Rightarrow\widehat{KAD}=\widehat{EDA}\left(2gócsoletrong\right).Mà\widehat{KAD}=\widehat{EAD}\left(gt\right)\\ \Rightarrow\widehat{EAD}=\widehat{EDA}\Rightarrow tamgiácAEDcântạiE\\ \Rightarrow AE=ED\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AE=BK\)

Xét tam giác AED có :

AE + ED > AD ( bất đẳng thức trong tam giác )

Mà AE = BK \(\Rightarrow BK+DE>AD\\ \RightarrowĐpcm\)

Kim Tuyến
Xem chi tiết
Kim Tuyến
Xem chi tiết
Ag.Tzin^^
Xem chi tiết