Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Phan Hưng
Xem chi tiết
Phạm Chí Thiện
19 tháng 11 2024 lúc 20:48

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

trâm lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 22:05

Câu 1: A

Câu 21: A

 

Nguyễn Hoàng Minh
1 tháng 11 2021 lúc 22:05

\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)

Đặng Đức Duy
15 tháng 6 2024 lúc 13:53

1a

Trần minh phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2021 lúc 0:29

a: \(=x^2\left(x-2\right)\)

b: \(=\left(x-3\right)\left(2x-9\right)\)

Trần minh phong
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 20:58

\(a,=x^2\left(x-2\right)\\ b,=\left(x-3\right)\left(2x-9\right)\\ c,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)

Đạt Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
14 tháng 9 2021 lúc 18:43

a) \(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)

b) \(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)

c) \(x^4-2x^3+x^2-2x=x^3\left(x-2\right)+x\left(x-2\right)=x\left(x-2\right)\left(x^2-1\right)=x\left(x-2\right)\left(x-1\right)\left(x+1\right)\)

d) \(x^2-4y^2+2x+4y=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(x-2y+2\right)\)

Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 22:03

\(4x^4+4x^2+1=\left(2x^2+1\right)^2\)

\(9x^4-6x^2+1=\left(3x^2-1\right)^2\)

\(\dfrac{x^2}{9}-\dfrac{2}{3}x+1=\left(\dfrac{x}{3}+1\right)^2\)

\(x^2-25=\left(x-5\right)\left(x+5\right)\)

thằng việt
Xem chi tiết
ILoveMath
21 tháng 12 2021 lúc 22:35

\(a,x^3+x^2-4x-4=x^2\left(x+1\right)-4\left(x+1\right)=\left(x^2-4\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\left(x+1\right)\\ b,x^2-2x-15=\left(x^2-5x\right)+\left(3x-15\right)=x\left(x-5\right)+3\left(x-5\right)=\left(x+3\right)\left(x-5\right)\\ c,x^2-4+\left(x-2\right)^2=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\)

\(d,x^3-2x^2+x-xy^2=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\)

hoàng minh vũ
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 8 2021 lúc 15:40

a) \(x^2\left(x^2+4\right)-x^2-4=x^2\left(x^2+4\right)-\left(x^2+4\right)=\left(x^2+4\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)

b) \(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25=\left(x^2+7x+11\right)^2-5^2=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Nhan Thanh
25 tháng 8 2021 lúc 15:53

a. \(x^2\left(x^2+4\right)-x^2-4\)

\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)

\(=\left(x^2-1\right)\left(x^2+4\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+4\right)\)

b. \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=x^4+2x^3+5x^2+4x-12\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

c. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (*)

Đặt \(t=x^2+7x+10\), ta được

(*) \(=t\left(t+2\right)-24\)

\(=t^2+2t-24\)

\(=\left(t-4\right)\left(t+6\right)\)

hay \(\left(x^2+7x+6\right)\left(x^2+7x+18\right)\)

 

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 1:12

a: Ta có: \(x^2\left(x^2+4\right)-x^2-4\)

\(=\left(x^2+4\right)\left(x^2-1\right)\)

\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)

b: Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-2\left(x^2+x\right)-12\)

\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

tue anh le
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 23:38

c: \(x^2-4+3\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)

\(=\left(x-2\right)\left(x+2+3x-6\right)\)

\(=\left(4x-4\right)\left(x-2\right)\)

\(=4\left(x-1\right)\left(x-2\right)\)