Chứng tỏ 10100 _ 4 chia hết cho 3.
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
1.Cho A=4+42+43+....+423+424
a)Chứng tỏ A chia hết cho 20
b)Chứng tỏ A chia hết cho 21
c)Chứng tỏ A chia hết cho 420
a, 3S= 3+ 3^2 +3^3+....+3^2014+3^2015
3S-S=(3+3^2+......+3^2015)-(S=3^0 +3^1 +3^2 + . . . +3^2014)
2S=3^2015-3^0
b,Đề bị sai hay sao????.Thui để sau sẽ có người giúp cậu.Bye Bye!!!!!!!
Tui trả lời câu b nè:
S=(3+3^2+3^4)+...+(3^2012+3^2013+3^2014)
Vì máy tính ko viết được dấu nhân nên tui nói bằng lời còn bạn tự kiểm tra nha
Các tổng trên chia hết cho 7 nên S chia hết cho 7
Đảm bảo là đúng!!! :)
CLGT Minh!
2014 ko chia hết cho 3, ghép thế kiểu ****
theo mình thì đề sai rồi. Số mũ cuối chia hết cho 3 mới giải được
tống đến 2013 chia hết cho 7; 3^2014 ko chia hết được
còn câu a thì nhân tổng S với 3^2 để khử rồi chia cho 8
Cho B=4^1+4^2+4^3+...+4^20 Chứng tỏ B Chia hết cho 5
Cho C=7+7^2+7^3+...7^20 Chứng tỏ C chia hết cho 8
\(B=4+4^2+4^3+...+4^{20}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{19}+4^{20}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+....+4^{19}.\left(1+4\right)\)
\(=5.\left(4+4^3+...+4^{19}\right)⋮5\)
Vậy B chia hết cho 5
\(C=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{19}+7^{20}\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{19}.\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{19}.8\)
\(=8.\left(7+7^3+...+7^{19}\right)⋮8\)
Vậy C chia hết cho 8
mình chưa học đến thông cảm nhé
Giải giúp mình
Bài 1: chứng tỏ B= 2+2*(mũ)2+2*3+...+2*60 chia hết cho 3 và 7
Bài 2: cho A=2+2*2+2*3+2*4+2*5+2*6+2*7+2*8
Chứng tỏ A chia hết cho 5
Bài 3: chứng tỏ abba+ab+ba chia hết cho 11
Bài 4: chứng minh A=4+4*2+4*3+4*4+4*5+4*6 chia hết cho 5
Bài 5: tìm các số tự nhiên a sao cho 2a+1 chia hết cho a-1
A = 3 + 3^2+ 3^3 + 3^3 + ... + 3^132
a, chứng tỏ A chia hết cho 40
b, chứng tỏ A chia hết cho 39
c, chứng tỏ A chia hết cho 120
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
a/ Chứng tỏ rằng tổng 3 số tự nhiên liên tiếp chia hết cho 3
b/ Chứng tỏ rằng tổng 4 số tự nhiên liên tiếp không chia hết cho 4
a) trung bình cộng của 3 số đó là a
tổng là b
ta có : 3a = b
suy ra b chia hết cho 3
a / Trong 3 số tự nhiên liên tiếp có 1 số CHC 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 .
Ta lấy hai số dư cộng lại => = 3 .
Nên 3 số tự nhiên liên tiếp bao giờ cũng chia hết cho 3 .
b/ Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4, 1 số chia 4 dư 1 , 1 số chia 4 dư 2 , 1 số chia 4 dư 3 .
Ta lấy 3 số dư cộng lại = 6 mả :
6 ko chia hết cho 4 nên :
4 số tự nhiên liên tiếp ko bao giờ chia hết cho 4 .
a)chứng tỏ rằng tổng 3 stn liên tiếp là số chia hết cho 3
b)a)chứng tỏ rằng tổng 4 stn liên tiếp là số không chia hết cho 4
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
Chứng tỏ
A=3+3²+3⁴+...+3¹ ⁰¹+3¹⁰² ko chia hết cho 40
B= 4+4²+4³+...+4⁹⁹ chia hết cho 21
C=1+5+5²+...+5¹⁰² ko chia hết cho 30
\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)
\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)
\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)
\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)
\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)
mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5
\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5
\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)
\(B=4+4^2+4^3+...+4^{99}\)
\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)
\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)
\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)
\(\Rightarrow dpcm\)
A = 3 + 32 + 33 +...+ 3101+ 3102
3A = 32 + 33 +...+ 3101 + 3102 + 3103
3A - A = 3103 - 3
2A = 3103 - 3
2A = 3103 - 3 = (34)25.33 - 3 = \(\left(\overline{..1}\right)^{25}\).27 - 3 = \(\overline{..4}\)
⇒ A = \(\overline{..2}\); \(\overline{..7}\)
Vì A là tổng của 102 số lẻ nên A là số chẵn ⇒ A = \(\overline{..2}\)
Vậy A không chia hết cho 10 hay A không chia hết cho 40 (đpcm)
a/Chứng tỏ rằng: 2x + 3y chia hết cho 17<=> 9x=5y chia hết cho 17
b/ cho C= 3+3^2 +3^3+3^4+...+3^100. chứng tỏ C chia hết cho 40
c/ tìm các số nguyễn x, y thỏa mãn (x-2)^2.(y-3)=-4
cho A = 1+3+3^2 + 3^3 + .....+ 3^11 chứng tỏ a chia hết cho 14
cho b = 3^1 + 3^3 + 3^4 +.... + 3^1991 chứng tỏ rằng B chia hết cho 13 , 41