Phát biểu mệnh đề đảo của nguyên lí “ Trong một tam giác cân, hai đường cao ứng với hai cạnh bên bằng nhau”. Mệnh đề đảo đó đúng hay sai?
Cho các mệnh đề kéo theo:
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c (a, b, c là những số nguyên).
Các số nguyên tố có tận cùng bằng 0 đều chia hết cho 5.
Một tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.
b) Hãy phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện đủ".
c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện cần".
Mệnh đề | Mệnh đề đảo | Phát biểu bằng khái niệm “ điều kiện đủ” | Phát biểu bằng khái niệm “điều kiện cần” |
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c. | Nếu a + b chia hết cho c thì cả a và b đều chia hết cho c. | a và b chia hết cho c là điều kiện đủ để a + b chia hết cho c. | a + b chia hết cho c là điều kiện cần để a và b chia hết cho c. |
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5. | Các số nguyên chia hết cho 5 thì có tận cùng bằng 0. | Một số nguyên tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5. | Các số nguyên chia hết cho 5 là điều kiện cần để số đó có tận cùng bằng 0. |
Tam giác cân có hai đường trung tuyến bằng nhau | Tam giác có hai đường trung tuyến bằng nhau là tam giác cân. | Tam giác cân là điều kiện đủ để tam giác đó có hai đường trung tuyến bằng nhau. | "Hai trung tuyến của một tam giác bằng nhau là điều kiện cần để tam giác đó cân. |
Hai tam giác bằng nhau có diện tích bằng nhau | Hai tam giác có diện tích bằng nhau là hai tam giác bằng nhau. | Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau. | Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác đó bằng nhau. |
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình bình hành”.
Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\) và xét tính đúng sai của nó.
b) Phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\).
a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.
b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.
Cho tam giác ABC. Xét các mệnh đề P : "AB = AC"; Q : "Tam giác ABC cân"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và mệnh đề đảo của nó ?
b) Xét tính đúng, sai của cả hai mệnh đề trên ?
a) \(\left(P\Rightarrow Q\right)\) : " Nếu AB = AC thì tam giác ABC cân"
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)" Nếu tam giác ABC cân thì AB = AC"
b) \(\left(P\Rightarrow Q\right)\) : đúng, \(\left(Q\Rightarrow P\right):\)sai
Phát biểu mệnh đề đảo của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề này.
P: “Nếu số tự nhiên n có chữ số tận cùng là 5 thì n chia hết cho 5”;
Q: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau”
Mệnh đề đảo của mệnh đề P: “Nếu số tự nhiên n chia hết cho 5 thì n có chữ số tận cùng là 5”;
Mệnh đề này sai. Chẳng hạn n = 10, chia hết cho 5 nhưng chữ số tận cùng là 0, không phải 5 .
Mệnh đề đảo của mệnh đề Q: “Nếu tứ giác ABCD có hai đường chéo bằng nhau thì tứ giác ABCD là hình chữ nhật"
Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c (a, b, c là những số nguyên)
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5
Tam giác cân có hai đường trung tuyến bằng nhau
Hai tam giác bằng nhau có diện tích bằng nhau
a. Hãy phát biếu mệnh đề đảo của mỗi mệnh đề trên
b. Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện đủ"
c. Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện cần"
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a+b chia hết cho c (a, b, c là những số nguyên).
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.
Tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.
b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện đủ”.
c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện “điều kiện cần”.
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Chứng minh định lí: trong một tam giác cân , hai đường trung tuyến ứng với hai cạnh bên thì bằng nhau.?
Và
Hãy chứng minh định lí đảo của định lí trên: nếu hai tam giác có hai đường trung tuyến bằng nhau thì tam giác đó là tam giác cân
Cho tam giác ABC. Từ các mệnh đề:
P: “Tam giác ABC đều”
Q: “Tam giác ABC cân và có một góc bằng \({60^o}\)”,
Hãy phát biểu hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) và xác định tính đúng sai của mệnh đề đó.
Nếu cả hai mệnh đề trên đều đúng, hãy phát biểu mệnh đề tương đương.
+) Mệnh đề \(P \Rightarrow Q\) là: “Vì tam giác ABC đều nên tam giác ABC cân và có một góc bằng \({60^o}\)”.
+) Mệnh đề \(Q \Rightarrow P\) là: “Tam giác ABC cân và có một góc bằng \({60^o}\) suy ra tam giác ABC đều”.
Dễ thấy cả hai mệnh đề trên đều đúng.
+) Mệnh đề tương đương: (dùng một trong các cách sau:)
“Tam giác ABC đều tương đương tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều là điều kiện cần và đủ để có tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều khi và chỉ khi tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều nếu và chỉ nếu tam giác ABC cân và có một góc bằng \({60^o}\)”
Phát biểu mệnh đề P => Q và phát biểu mệnh đề đảo, xét tính đúng sai của các mệnh đề đó với: P: ″2 > 9″ và Q: ″4 < 3″. Chọn đáp án đúng:
A. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q đúng.
B. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
C. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này sai vì mệnh đề Q sai.
D. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.