Giai phuong trinh \(\sqrt{x^3+15}+2=\sqrt{x^3+8}+3x\)
Giai phuong trinh:
\(28+\sqrt[3]{x^2}=3x+2\sqrt[3]{x}+\left(x-4\right)\sqrt{x-7}\)
giai phuong trinh: \(\sqrt[3]{x^2+4x+3}+\sqrt[3]{4x^2-9x-3}=\sqrt[3]{3x^2-2x+2}+\sqrt[3]{2x^2-3x-2}\)
giai phuong trinh: \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x-1}\)
Giai phuong trinh \(x\sqrt{x^2-x+1}+2\sqrt{3x+1}=x^2+x+3\)
ĐK: x>= -1/3
Ta có: \(pt\Leftrightarrow2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
<=> \(x^2-2x\sqrt{x^2-x+1}+\left(x^2-x+1\right)+\left(3x+1\right)-2.\sqrt{3x+1}.2+4=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)
Mà : \(\left(x-\sqrt{x^2-x+1}\right)^2\ge0;\left(\sqrt{3x+1}-2\right)^2\ge0\)
Khi đó: \(\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2\ge0\)
Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\left(x-\sqrt{x^2-x+1}\right)^2=0\\\left(\sqrt{3x+1}-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=x^2-x+1,x\ge0\\3x+1=4\end{cases}}\Leftrightarrow x=1\)tm đk
Vậy x=1
Ta có thể dùng cô si chăng?
ĐK: \(x\ge-\frac{1}{3}\)
\(VT=\sqrt{x^2\left(x^2-x+1\right)}+\sqrt{4\left(3x+1\right)}\)
\(\le\frac{x^2+x^2-x+1}{2}+\frac{4+3x+1}{2}=\frac{2x^2+2x+6}{2}=x^2+x+3=VP\)
Để đẳng thức xảy ra, tức là xảy ra đẳng thức ở phương trình thì:
\(\hept{\begin{cases}x^2=x^2-x+1\\4=3x+1\end{cases}}\Leftrightarrow x=1\)
Vậy...
Is it true??
tth_new nếu thế thì em phải xét 2 TH \(x\ge0\) ( là trường hợp em làm ) và \(\frac{1}{3}\le x< 0\)
TH: \(\frac{1}{3}\le x< 0\)
\(VT< 0+2=2\)
\(VP=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>\frac{1}{36}+\frac{11}{4}=\frac{25}{9}>\frac{18}{9}=2>VT\) => loại TH này
Giai phuong trinh :\(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x+8}=1+\sqrt{3}\)
giai phuong trinh \(\sqrt{8+\sqrt{x-3}}+\sqrt{5-\sqrt{x-3}=5}\)
giai phuong trinh \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Pt tương đương:
\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\)=\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\)
\(\Leftrightarrow\)-3\(\sqrt[3]{\text{(4x-3)(3x+1)}}\)(\(\sqrt[3]{4x-3}\)-\(\sqrt[3]{3x+1}\))=3\(\sqrt[3]{\left(5-x\right)\left(2x-9\right)}\)(\(\sqrt[3]{5-x}\)+\(\sqrt[3]{2x-9}\))
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt[3]{4x-3}-\sqrt[3]{3x+1}=\sqrt[3]{5-x}+\sqrt[3]{2x-9}=0\left(1\right)\\3\sqrt[3]{-12x^2+5x+3}=3\sqrt[3]{-2x^2+19x-45}\left(2\right)\end{cases}}\)
(1)<=>4x-3=3x+1 và x-5=2x-9<=>x=4
(2)<=>-12x2+5x+3=-2x2+19x-45<=>-5x2-7x+24=0<=>x=8/5 và x=-3
bạn thử các giá trị x=4,x=8/5 và x=-3 vào pt và kết luận
mik ko hieu vi sao ban suy ra duoc (1) va (2)
bn co the viet ro ra duoc ko ?
theo mik thay thi 2 pt do dau co tuong duong
Mình chuyển vế rồi lập phương, do 4x-3-(3x+1)=2x-9+(5-x) nên mình giản bỏ luôn, hơi tắc xíu
\(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
Giai phuong trinh
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/1-23sqrt3x-23sqrt6-5x-802-sqrt3x1-sqrt6-x3x2-14x-803-sqrtx21253xsqrtx25.1468578539979
Giai phuong trinh va he phuong trinh:
a) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
b) \(x^2+3x+1=\left(x+3\right).\sqrt{x^2+1}\)
c) \(\left\{{}\begin{matrix}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{matrix}\right.\)