Tìm x biết
\(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-700=0\)
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Tìm x, biết:
a) \(\left(3x-1\right)^2-\left(2x+3\right)^2=0\)
b)\(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
Giải:
a) \(\left(3x-1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1+2x+3\right)\left(3x-1-2x-3\right)=0\)
\(\Leftrightarrow\left(5x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=4\end{matrix}\right.\)
Vậy ...
b) \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-20x-12x+5+3x-7-48x^2+112x=81\)
\(\Leftrightarrow83x-2=81\)
\(\Leftrightarrow83x=83\)
\(\Leftrightarrow x=1\)
Vậy ...
Giải phương trình
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
\(x^4-4x^3+3x^2+4x-4=0\)
\(x^4-4x^3+12x-9=0\)
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
\(x^4-4x^3+3x^2+4x-4=0\)
\(x^4-4x^3+4x^2-x^2+4x-4=0\)
\(x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(x^2\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\left(x-2\right)^2\left(x^2-1\right)=0\)
\(Th1:\left(x-2\right)^2=0^2\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(Th2:x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm\sqrt{1}\)
Giải các PT sau
a,\(\left(9^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
b,\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
c,\(\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
d,\(x^4+x^3+x+1=0\)
e,\(x^3-7x+6=0\)
f,\(x^4-4x^3+12x-9=0\)
g,\(x^5-5x^3+4x=0\)
h,\(x^4-4x^3+3x^2+4x-4=0\)
Tìm x
\(\left(4x-1\right)^3+\left(3-4x\right)\left(9+12x+16x^2\right)=\left(8x-1\right)\left(8x+1\right)-\left(3x-5\right)\)
GIÚP MIK VS
Tìm \(x\), biết :
\(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
Ta có: \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x=81\)
\(\Leftrightarrow83x-2=81\)
\(\Leftrightarrow83x=81+2=83\)
\(\Leftrightarrow x=1\)
(12x – 5)(4x – 1) + (3x – 7)(1 – 16x) = 81.
48x2 – 12x – 20x + 5 + 3x – 48x2 – 7 + 112x = 81.
83x – 2 = 81.
83x = 83.
x = 1.
Ta co:(12x-5)(4x-1) +(3x-7)(1-16x)=81
⇔48x2-12x -20x +5 +3x-48x2 -7 ++112x=81
⇔83x-2=81
⇔83x=81 +2=83
⇔x = 1
Chuc ban hoc tot❓❗⛇
Giải phương trình
a) \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)=35\)
b) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
c) \(\left(x-1\right)\left(x-3\right)\left(x^2-4x+8\right)=6\)
d) \(\left(x-1\right)\left(x+2\right)\left(x+4\right)\left(x+7\right)=16\)
Phân tích nhân tử:
\(\left(4x-1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)-3x^2\)
Bài 1. Giải các phương trình sau:
a.\(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
b. \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
c. \(\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
d. \(x^4+x^3+x+1=0\)
e. \(x^3-7x+6=0\)
h. \(x^4-4x^3+3x^2+4x-4=0\)
g. \(x^5-5x^3+4x=0\)
f. \(x^4-4x^3+12x-9=0\)
câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!
vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)
\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)
Chúc bạn học tốt!!
d/
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
e/
\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)
\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
h.
\(x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Leftrightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)
g/
\(x\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow x\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\\x=\pm2\end{matrix}\right.\)
f/
\(x^4-9-4x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2-4x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{3}\\x=1\\x=3\end{matrix}\right.\)