Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Doan Nhat Truong
Xem chi tiết
Edogawa
11 tháng 4 2017 lúc 21:36

để A có giá trị bằng 1

suy ra 3 phải chia hết cho n-1

suy ra n-1 \(\in\)Ư(3)={1,3 }

TH1 n-1=1\(\Rightarrow\)n=1+1=2

TH2 n-1=3\(\Rightarrow\)n=3+1=4

Vậy n = 2 hoặc n =4

ng tuan hao
11 tháng 4 2017 lúc 21:43

 a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1   suy ra n-1=3

                                                                                     n=4

b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương

              từ trên suy ra n-1=1 hoặc 3

    nếu n-1=1 suy ra n =2   3/n-1=3 là snt

    nếu n-1=3  suy ra 3/n-1=3/3=1 loại vì ko là snt                                     

Kim Tuyến
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 22:02

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

Nguyễn Mai Lan
16 tháng 10 2021 lúc 9:52

24

Kim Tuyến
Xem chi tiết
Minh Nhân
27 tháng 5 2021 lúc 9:22

\(\dfrac{2a^2-3a-2}{a^2-4}=2\)

\(\Leftrightarrow2a^2-3a-2-2a^2+8=0\)

\(\Leftrightarrow-3a+6=0\)

\(\Leftrightarrow a=2\)

Trần Ái Linh
27 tháng 5 2021 lúc 9:23

ĐK: `a \ne \pm 2`

`(2a^2-3a-2)/(a^2-4)=2`

`<=>2a^2-3a-2=2(a^2-4)`

`<=>2a^2-3a-2=2a^2-8`

`<=>-3a-2=-8`

`<=>-3a=-6`

`<=>a=2` (Loại)

Vậy không có `a` thỏa mãn.

l҉o҉n҉g҉ d҉z҉
27 tháng 5 2021 lúc 9:29

Sao lại <=> được nhỉ -.-

\(\dfrac{2a^2-3a-2}{a^2-4}=2\left(ĐK:a\ne\pm2\right)\)

\(\Rightarrow2a^2-3a-2=2a^2-8\)

\(\Leftrightarrow-3a=-6\Leftrightarrow a=2\left(ktm\right)\)

Vậy không có giá trị của a thỏa mãn 

Nguyễn Hồng Quyên
Xem chi tiết
thuy linh 123
Xem chi tiết
Đỗ phương vy
4 tháng 12 2017 lúc 19:44

đáp án 15.9

Trịnh Sảng
Xem chi tiết
Carina Marian
Xem chi tiết
Zi Heo
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 11:03

a: \(N=\left(\dfrac{1}{y-1}+\dfrac{1}{\left(y-1\right)\left(y^2+y+1\right)}\cdot\dfrac{y^2+y+1}{y+1}\right)\cdot\left(y^2-1\right)\)

\(=\dfrac{y+1+1}{\left(y-1\right)\left(y+1\right)}\cdot\left(y^2-1\right)=y+2\)

b: Thay y=1/2 vào N, ta được:

N=1/2+2=5/2

c: Để N>0 thì y+2>0

hay y>-2

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}y>-2\\y\notin\left\{-1;1\right\}\end{matrix}\right.\)

Akai Haruma
8 tháng 1 2022 lúc 11:08

Lời giải:
a. ĐKXĐ: $y\neq \pm 1$

\(N=\left(\frac{1}{y-1}-\frac{1}{(1-y)(1+y+y^2)}.\frac{y^2+y+1}{y+1}\right).(y^2-1)\)

\(=(\frac{1}{y-1}-\frac{1}{(1-y)(y+1)})(y-1)(y+1)\)

\(=\frac{1}{y-1}(y-1)(y+1)-\frac{1}{-(y-1)(y+1)}.(y-1)(y+1)=y+1-(-1)=y+2\)

b. Khi $y=\frac{1}{2}$ thì:
$N=\frac{1}{2}+2=\frac{5}{2}$

c. Để $N>0\Leftrightarrow y+2>0\Leftrightarrow y>-2$

Kết hợp đkxđ suy ra $y>-2$ và $y\neq \pm 1$ thì $N$ dương.

 

Kim Tuyến
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 6 2021 lúc 11:15

a) C được xác định <=> x khác +- 2

b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)

c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1

Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương