Những câu hỏi liên quan
ITACHY
Xem chi tiết
Vũ Tiền Châu
6 tháng 8 2018 lúc 12:56

Ta có BĐT \(\Leftrightarrow\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+ac+bd+dc\)

\(\Leftrightarrow ac+bd\ge2\sqrt{abcd}\) (luôn đúng theo AM-GM)

p/s: mà cái BĐT bn cần chứng minh đó chính là BĐT Bunyakovsky đấy ^.^

Bình luận (0)
Phan Văn Hiếu
Xem chi tiết
Phan Văn Hiếu
12 tháng 9 2017 lúc 21:39

ý a ko cần giải đâu nha mk ra òi

Bình luận (0)
Toi da tro lai va te hai...
17 tháng 7 2019 lúc 22:24

Dễ thôi

Bình luận (0)
Toi da tro lai va te hai...
17 tháng 7 2019 lúc 22:25

Dùng mẹo nhé bạn

Bình luận (0)
Nguyễn Thị Hằng
Xem chi tiết
Thu Nguyễn
Xem chi tiết
kudo shinichi
23 tháng 1 2019 lúc 11:12

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Bình luận (0)
hung
Xem chi tiết
Vãi Linh Hồn
Xem chi tiết
Thanh Tùng DZ
6 tháng 6 2019 lúc 9:26

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)

Bình luận (0)
Trang Kenny
Xem chi tiết
Pham Quoc Cuong
8 tháng 9 2018 lúc 21:43

BĐT Mincopxki 

Ta cần CM: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\) 

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ab+cd\right)\) 

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ab+cd\) 

\(\Leftrightarrow a^2b^2+c^2d^2+b^2c^2+a^2d^2\ge a^2b^2+c^2d^2+2abcd\) 

\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)(đúng)

Bình luận (0)
Nguyễn Thị Thanh Mai
Xem chi tiết
Hồng Phúc
15 tháng 12 2020 lúc 15:50

\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+c\right)\left(b+d\right)}\)

\(\Leftrightarrow ab+cd+2\sqrt{abcd}\le ab+bc+cd+da\)

\(\Leftrightarrow bc+da\ge2\sqrt{abcd}\)

\(\Leftrightarrow bc+da-2\sqrt{abcd}\ge0\)

\(\Leftrightarrow\left(\sqrt{bc}-\sqrt{da}\right)^2\ge0\) đúng \(\forall a,b,c,d>0\)

Bình luận (0)
Tuyển Trần Thị
Xem chi tiết