cho duong thang (d) : y=mx +2m -1.a) CMR (d) luon luon di qua 1 diem co dinh .b) xac dinh m de khoang cach tu O den (d) lon nhat
cho ham so y=mx-2m+1 co do thi (d) va diem A(2;1) . a) ve (d) khi m=1 . b) viet phuong trinh duong thang OA . c) CMR :A thuoc (d) . d) tim m de khoang cach tu O den (d) lon nhat
Cho (P): y=x^2/2 va duong thang (d): y=mx+1/2 a) Ve (P) b) CM: voi moi m duong thang (d) luon di qua mot diem co dinh c) CM: voi moi m (d) luon cat (P) tai hai diem phan biet
CMR: duong thang (d) : y=(m-2)x-3m+4 luon di qua mot diem co dinh
gọi điểm coos định là A(a,b)
thay a,b vào ,,phá ra tách thành C.m=D => C=0=D => a=...,b=,....
cho duong tron (O) co BC la day cung co dinh nho hon duong kinh , A la diem di dong tren cung BC lon ( A khong trung B va C). goi AD, BE, CF la duong cao cua tam giac ABC, EF cat BC tai M. Qua D ke duong thang song song EF cat AB tai P va cat AC tai Q:
a) CM: \(\widehat{BPQ}=\widehat{BCQ}\)va tu giac BPCQ noi tiep
b) CM: tam giac DPF can tai D
c) goi N la trung diem BC. CM: MF.ME=MD.MN
d) CM duong tron ngoai tiep tam giac MPQ luon di qua 1 diem co dinh khi A di dong tren cung lon BC
a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ
Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).
b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).
c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN
Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).
d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)
Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)
Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)
Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)
Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).
a) Ve do thi ham so y=4/3x - 4
b) Xac dinh m de dg thang y=(m+2)x + m^2 di qua diem A(2;3)
c) Xd m de dg thang y=(m+2)x +m^2 (d1) cat dg thang y= 4x +4(d2) tai diem B co tug do = -4
d) Tinh khoang cach tu diem A( A la diem o cau b) den dg thang y=4/3x-4 ( don vi cm)
GIUP MK VS MK DANG CAN GAP
b: Thay x=2 và y=3 vào (d),ta được:
m^2+2m+4=3
=>m^2+2m+1=0
=>m=-1
d: y=4/3x-4
nên 4/3x-y-4=0
\(d\left(A;d\right)=\dfrac{\left|2\cdot\dfrac{4}{3}+\left(-1\right)\cdot3-4\right|}{\sqrt{\left(\dfrac{4}{3}\right)^2+1^2}}=\dfrac{13}{5}\)
c: Thay x=-4 vào (d2), ta được:
\(y=4\cdot\left(-4\right)+4=-16+4=-12\)
Thay x=-4 và y=-12 vào (d1), ta được:
\(-4\left(m+2\right)+m^2=-12\)
=>m^2-4m-8=-12
=>m=2
Tren mat phang toa do Oxy , cho duong thang y= ( 2m + 1)x -4m-1 va diem A ( -2;3).Tim m de khoang cach tu A den duong thang tren la lon nhat
theo dg thẳng x=(4m+1)/(2m+1);y=-4m-1
Ta có Khoảng cách từ dg thẳng đến A là
căn((4m+1)/(2m+1)+2)^2+(-4m-1-3)^2)
tự khai ra giải pt
cho tam giac ABC co B va C la goc nhon;M nam gia B va C goi d la tong cac khong cach tu B va C den AM. a) CM: d<BC b) xac dinh vi tri diem M tren BC de d dat gia tri lon nhat
cho tam giac ABC can tai A.tren canh bc lay diem D trên tiadoi cua CB lay diem E sao cho BD = CE tu D va E ke cac duong thang vuong goc voi BC lan luot cat AB o M cat AC o N. I la trung diem cua MN.CMR duong thang vuong goc voi MN tai I luon di qua 1 diem co dinh khi D thay đoi trên canh BC
cho tam giac ABC,AC>AB,cac diem D va E theo thu tu di chuyen tren cac canhAB va AC,BD=CE.CMR: cac duong trung truc cua DE luon di qua mot diem co dinh