Cho B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Tìm x \(\in\) Z để B có giá trị nguyên .
Cho biểu thức \(B=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\) .
a, Rút gọn B.
b, Tìm các giá trị \(x\in Z\) để B có giá trị nguyên.
B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\) + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)- \(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)( \(x\ge0\); \(x\ne2;3\))
= \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)= \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)= \(1+\frac{4}{\sqrt{x}-3}\)
để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)
\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)
ta có bảng sau
\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1 (L)
x 16 4 25 1 49
vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }
#mã mã#
Cho \(B=\dfrac{2}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Tìm \(x\in Z\) để B có giá trị nguyên
\(B=\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
Để B nguyên thì \(\sqrt{x}-3\in\left\{1;-1;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;8\right\}\)
hay \(x\in\left\{16;4;64\right\}\)
Bài 1: Cho \(A=\frac{\sqrt{x}-3}{2}\) Tìm \(x\in Z\)và \(x< 30\)để A có giá trị nguyên
Bài 2: Cho \(B=\frac{5}{\sqrt{x}-1}\)Tìm \(x\in Z\)để B có giá trị nguyên
Cho \(B=\frac{\sqrt{x+1}}{\sqrt{x-3}}\) . Tìm \(x\in Z\) để B có giá trị là một số nguyên dương
ĐK: \(x\ge-1;x\ne3\)
\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)
Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0
Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.
Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)
Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)
Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)
Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.
Cho B=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\).Tìm x thuộc z để B có giá trị là 1 số nguyên dương
B=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
B = \(1+\frac{4}{\sqrt{x}-3}\)
để B có giá trị dương thì 4\(⋮\)\(\sqrt{x}-3\) và \(\sqrt{x}-3\ge0\)
=> \(\sqrt{x}-3\)\(\in\)Ư(4)=(1;-1;4;-4) mà \(\sqrt{x}-3\ge0\)nên \(\sqrt{x}-3\in\left(1;4\right)\)
\(\sqrt{x}\)\(\in\)(4;7)
x \(\in\)(16;49)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.1/ Cho biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a)Tìm các giá trị của x để A<-1
b) Tìm các giá trị của \(x\in Z\) sao cho \(2A\in Z\)
2/ Cho \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)tìm các giá trị của x để A>-6
Cho B=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\) tìm c thuộc Z để B có giá trị là một số nguyên dương
Cho \(B=\frac{5}{\sqrt{x}-1}\).Tìm x\(\in\)Z để B có giá trị nguyên
Cho A = \(\sqrt{x+5}+\frac{2}{11}\) . Tìm giá trị nhỏ nhất của A
Cho B = \(\frac{3}{19}-3.\sqrt{x-2}\). Tìm giá trị lớn nhất của B
Cho C = \(\frac{\sqrt{x-3}}{2}\). Tìm \(x\in Z\)và x < 50 để C có giá trị nguyên
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
Cho A = \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
a) Tìm x để A= -1
b) Tìm \(x\in Z\)để A nhận giá trị nguyên
a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
\(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)
\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)
\(\Leftrightarrow\sqrt{x}+3=4\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy A = -1 \(\Leftrightarrow x=1\)
b) \(A=1-\frac{8}{\sqrt{x}+3}\)
\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)
\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)thì A nguyên
a) Ta có: A=-1
=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)=-1
<=>\(\sqrt{x}-5=-\left(\sqrt{x}+3\right)\)
<=> \(2\sqrt{x}=2\)
<=> \(\sqrt{x}=1\)
<=> \(x=1\)
b) \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)
=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)
A nhận giá trị nguyên khi \(\frac{8}{\sqrt{x}+3}\)là số nguyên, hay \(\sqrt{x}+3\)là ước số của 8. Dễ dàng tính được x=1, x=25