Cho góc xOy= m0. Trên Oy lấy điểm A. Qua A vẽ tia Am sao cho Am // Ox. Tính góc OAm.
Cho góc xOy= m0. Trên Oy lấy điểm A. Qua A vẽ tia Am sao cho Am // Ox. Tính góc OAm.
Bài 5: (3,5 đ) Cho góc 0 xOy 50 . Trên tia Ox lấy điểm A (A khác O), qua A vẽ tia Am song song với Oy (tia Am nằm trong góc xOy) . a) Tính số đo góc OAm. b) Trên tia Oy lấy điểm B (B khác O), qua B kẻ đường thẳng d vuông góc với Oy. Đường thẳng d cắt tia Am tại H. Hỏi d có vuông góc với tia Am không? Vì sao? c) Qua A kẻ AK vuông góc với Oy. Hỏi AK có song song với d không? Vì sao
Cho góc nhọn xOy, điểm O nằm trên tia Oy qua A vẽ tia AM. Tính số đo góc OAM để AM // Ox.
cho góc xoy= anpa điểm A nằm trên tia oy qua A VẼ TIA AM . tính số đo góc OAM theo anpa để AM song song OX
cho góc xOy = a, điểm A nằm trên Oy. Qua A vẽ tia Am. Tính số đo góc OAm để Am song song với Ox
cho góc xOy =a, điểm A nằm trên Oy. Qua A vẽ tia Am. Tính số đo góc OAm để Am song song với Ox
nếu Am//Ox thi góc OAm + x0y = 180
=> OAm = 180o -a
Cho góc xOy = 700 . Điểm A nằm trên tia Oy, qua A vẽ tia Am. Tính số đo góc OAm để Am // Ox
Am // Ox <=> góc A1 + góc O1 = 180 độ (trong cùng phía)
<=> Góc A1 = 110 độ (do góc O1 = 70 độ <gt>)
Vậy góc OAm = 110 độ để Am // Ox
Cho xOy = 4a, điểm A nằm trên Oy. Qua A vẽ tia Am. Tính số đo góc OAm để Am song song với Ox.
1) Cho xOy = 60o. Trên tia Ox lấy điểm C. Vẽ tia Ct
a) Tính số đo của góc xCt để cho Ct//Oy
b) Cũng hỏi như trên nếu thay 60o bởi ao
2) a) Cho góc xOy. Lấy điểm A trên tia Ox, B trên tia Oy. Vẽ ra ngoài góc xOy các tia Am, Bn sao cho OAm=35o; góc OBn=55o. Chứng minh rằng nếu Am//Bn thì Ox vuông góc với Oy.
b) Cho xOy=80o. Lấy A,B lần lượt trên Ox, Oy. Vẽ các tia Am, Bn ở trong xOy sao cho mAx=30o và nBy=50o. Chứng minh rằng Am//Bn
Mọi người nhanh lên nhé mình đang vội tks
Cho góc vuông xOy. Trên tia Oy lấy điểm D, trên nửa mặt phẳng MOD không chứa tia Ox, vẽ tia Dz so cho góc ODz = 90 độ và tia Ot sao cho DOt = 140 độ. Trên tia Ot lấy điểm A. Trên nửa mặt phẳng MOA không chứa Ox vẽ tia AM sao cho góc OAM = 130 độ. Chứng minh AM // Ox