cho a,b,c>0 và \(a+b+c\le3\)
Cmr: \(\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}\ge672\)
Cho a, b, c > 0 thỏa mãn \(a+b+c=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\) CMR: \(ab+bc+ca\le3\)
Cho các số dương a, b, c thỏa mãn \(a+b+c\le3\) . Chứng minh rằng : \(\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}\ge673\)
Đặt A = \(\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ac}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{2016}{ab+bc+ac}\)
Do a ; b ; c dương , áp dụng BĐT Cô - si cho 3 số dương , ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) => BĐT được c/m
Tiếp tục , áp dụng BĐT Cô - si , ta có :
\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(a^2+c^2\right)\ge2ab+2bc+2ac\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
=> BĐT được c/m
Áp dụng các BĐT phụ trên vào bài toán , ta có :
\(A\ge\frac{9}{\left(a+b+c\right)^2}+\frac{2016}{\frac{\left(a+b+c\right)^2}{3}}\)
Vì \(a+b+c\le3\) \(\Rightarrow A\ge\frac{9}{3^2}+\frac{2016}{\frac{3^2}{3}}=1+\frac{2016}{3}=673\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
CMR \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)với \(\hept{\begin{cases}a+b+c\le3\\a,b,c>0\end{cases}}\)
Ta có :\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\)
Áp dụng bđt Cauchy - Schwarz dạng Engel ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}=1\)( do \(a+b+c\le3\)) (1)
Lại có : \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)
nên \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\Leftrightarrow9\ge3\left(ab+bc+ac\right)\Rightarrow ab+bc+ac\le3\)
\(\Rightarrow\frac{2007}{ab+bc+ac}\ge\frac{2007}{3}=669\)(2)
Từ (1) ; (2) \(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\ge670\)
Hay \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)(đpcm)
cho a,b,c là số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3.\)CMR : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{1}{2}\left(ab+bc+ca\right)\ge3\)
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng lại:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ca}{2}\)
\(\Rightarrow VT\ge a+b+c\)
Mặt khác:
\(\frac{9}{a+b+c}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\Rightarrow9\le3\left(a+b+c\right)\Rightarrow a+b+c\ge3\)
Khi đó:
\(VT\ge a+b+c\ge3\left(đpcm\right)\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Cho ba số dương a, b,c thỏa mãn \(a+b+c\le3\). Tìm GTNN của biểu thức: \(P=\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}\)
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2016}{ab+bc+ca}\)
\(P\ge\frac{9}{a^2+b^2+c^2+ab+bc+ca+ab+bc+ca}+\frac{2016}{\frac{1}{3}\left(a+b+c\right)^2}\)
\(P\ge\frac{6057}{\left(a+b+c\right)^2}\ge\frac{6057}{3^2}=673\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Ta có : a + bc = a ( a + b + c ) + bc = ( a + c ) ( a + b )
BĐT cần chứng minh tương đương với :
\(\frac{a\left(a+b+c\right)-bc}{\left(a+c\right)\left(a+b\right)}+\frac{b\left(a+b+c\right)-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c\left(a+b+c\right)-ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{2}\)
\(\left(a^2+ab+ac-bc\right)\left(b+c\right)+\left(ab+b^2+bc-ac\right)\left(a+c\right)+\left(ac+bc+c^2-ab\right)\left(a+b\right)\le\frac{3}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
khai triển ra , ta được :
\(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+6abc\le\frac{3}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)+3abc\)
\(\Rightarrow\frac{-1}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)\le-3abc\)
\(\Rightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\ge6abc\)( nhân với -2 thì đổi dấu )
\(\Rightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Rightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
vì BĐT cuối luôn đúng nên BĐT lúc đầu đúng
Dấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Chứng minh bất đẳng thức \(\frac{a+b}{a^2+b^2}+\frac{b+c}{b^2+c^2}+\frac{c+a}{c^2+a^2}\le3\)
với a, b,c >0 và a+b+c=ab+bc+ca
Nhìn giả thiết thấy nản quả:(
BĐT \(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(ab+bc+ca\right)\) (nhân ab +bc +ca vào hai vế)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(a+b+c\right)\) (chú ý giả thiết ab + bc +ca = a + b + c)
\(VT=\Sigma_{cyc}\frac{ab\left(a+b\right)}{a^2+b^2}+\Sigma_{cyc}\frac{c\left(a+b\right)^2}{a^2+b^2}\)
\(\le\Sigma_{cyc}\frac{ab\left(a+b\right)}{2ab}+\Sigma_{cyc}\frac{2c\left(a^2+b^2\right)}{a^2+b^2}=3\left(a+b+c\right)\)
Vậy ta có đpcm.Đẳng thức xảy ra khi a = b = c
Cho a,b,c>0. Cmr: a) \(\frac{ab}{a^2+bc+ca}+\frac{bc}{b^2+ca+ab}+\frac{ca}{c^2+ab+bc}\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
b) \(\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\le1\)
a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)
@tth_new, @Nguyễn Việt Lâm, @No choice teen, @Akai Haruma
giúp e vs ạ! Cần gấp
Thanks nhiều
Cho a+b+c=1 (a,b,c>0). CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/222370673956.html