Tìm GTNN của A = |x-2017|+|x-2018|
Tìm GTNN của biểu thức: A= (|x-2016| + 2017)/(|x - 2016| + 2018)
Ta có:
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\Rightarrow\frac{1}{\left|x-2016\right|+2018}\le\frac{1}{2018}\)
=>\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge\frac{2017}{2018}\)
=>\(A_{min}=\frac{2017}{2018}\)<=>|x-2016|=0<=>x-2016=0<=>x=2016
Tìm GTNN của biểu thức \(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}\)
Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)
Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018
Dấu "=" xảy ra khi: t=0⇔x=2017
...
..
\(A=\frac{\left|x-2017\right|+2017}{\left|x-2017\right|+2018}=1-\frac{1}{\left|x-2017\right|+2018}\)
A bé nhất khi \(\frac{1}{\left|x-2017\right|+2018}\) lớn nhất.
Mà \(\frac{1}{\left|x-2018\right|+2018}\le\frac{1}{2018}\forall x\) (do \(\left|x-2018\right|\ge0\forall x\))
Suy ra \(A\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)
Vậy \(A_{min}=\frac{2017}{2018}\Leftrightarrow x=2017\)
tìm GTNN của biểu thức
A=|x-2016| +|x-2017| + |x-2018|
Ta có:
A=|x−2016|+2017|x−2016|+2018 =|x−2016|+2018−1|x−2016|+2018 =1−1|x−2016|+2018
Vì |x−2016|≥0⇒|x−2016|+2018≥2018⇒1|x−2016|+2018 ≤12018
=>A=1−1|x−2016|+2018 ≥20172018
=>Amin=20172018 <=>|x-2016|=0<=>x-2016=0<=>x=2016
Tìm GTNN của biểu thức \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)
\(A=1-\frac{1}{\left|x-2017\right|+2019}\)
A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất
khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất
khi \(\left|x-2017\right|+2019\)nhỏ nhất
mà |x - 2017| \(\ge0\)
=> |x - 2017| + 2019 \(\ge2019\)
Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017
\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\)
\(A=\frac{2018}{2019}\)
Ta có : \(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
Ta có : \(\left|x-2017\right|\ge0\)
\(\Rightarrow\left|x-2017\right|+2019\ge2019\)
\(\Rightarrow\frac{1}{\left|x-2017\right|+2019}\le\frac{1}{2019}\)
\(\Rightarrow-\frac{1}{\left|x-2017\right|+2019}\ge-\frac{1}{2019}\)
\(\Rightarrow1-\frac{1}{\left|x-2017\right|+2019}\ge1-\frac{1}{2019}=\frac{2018}{2019}\)
Hay : \(A\ge\frac{2018}{2019}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2017\right|=0\Leftrightarrow x=2017\)
Vậy : min \(A=\frac{2018}{2019}\) tại \(x=2017\)
tìm GTNN của B=/x-2016/+/x-2017/+/x-2018/+/x-2019/
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.
tìm GTNN cua A=|2016-x|+|2017-x|+|2018-x|
Để A nn thì 2016 - x nn và thuộc N
Suy ra 2016 - x=0
=>x= 2016
tìm GTNN của biểu thức sau: C=|x-2016|+|x-2017|+|x-2018|
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
tìm GTNN của A=căn bậc hai của x-2017 + |y-2018|+(z+2019)^2000+2019
GTNN là 2019 nhé
Tìm GTNN của A=\(\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)