Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Ngọc Phan Trần
Xem chi tiết
ngtt
Xem chi tiết
Toru
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

ngocanh25
Xem chi tiết
Toru
11 tháng 10 2023 lúc 17:51

\(f,F=x^2+9y^2-8x+4y+27\) (sửa đề)

\(=\left(x^2-8x+16\right)+\left(9y^2+4y+\dfrac{4}{9}\right)+\dfrac{95}{9}\)

\(=\left(x^2-2\cdot x\cdot4+4^2\right)+\left[\left(3y\right)^2+2\cdot3y\cdot\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2\right]+\dfrac{95}{9}\)

\(=\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\)

Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)

             \(\left(3y+\dfrac{2}{3}\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\ge\dfrac{95}{9}>0\forall x;y\)

hay \(F\) luôn dương với mọi \(x;y\).

\(Toru\)

Dhfbvdm
Xem chi tiết
Phạm Tuán Quang
16 tháng 9 2021 lúc 17:05

Đề bài sai nhé bạn

Ví dụ x = 1 thì bthức = -1 - 6 + 10 = 3 không âm

Khách vãng lai đã xóa
Athanasia Karrywang
16 tháng 9 2021 lúc 17:06

\(-x^2-6x+10\)

\(=-1\left(x^2+6x-10\right)\)

=>  -x^2-6x+10   <  0  với mọi x

Khách vãng lai đã xóa
ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Kiệt Nguyễn
2 tháng 8 2019 lúc 17:19

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Kiệt Nguyễn
2 tháng 8 2019 lúc 17:22

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

Hương Thu
Xem chi tiết
Trà My
1 tháng 10 2017 lúc 22:43

sai đề rồi x=-2;y=5 biểu thức dương

Lương Thế Tùng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 7 2017 lúc 20:55

Ta có : C = 4x2 + 4y2 - 8x + 4y + 427

=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422

=> C = (2x - 2)2 + (2y + 1)2 + 422

Mà \(\left(2x-2\right)^2\ge0\forall x\)

       \(\left(2y+1\right)^2\ge0\forall x\)

Nên C = (2x - 2)2 + (2y + 1)2 + 422  \(\ge422\forall x\)

Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)

Vậy C luôn luôn dương (đpcm)

Bùi Khánh Linh
Xem chi tiết
Trần Đức Thắng
24 tháng 7 2015 lúc 21:23

Biến đổi đưa về hằng đẳng thức rồi đánh giá

Nguyễn Thị Tuyết
Xem chi tiết
Công chúa sinh đôi
10 tháng 8 2016 lúc 13:12

kết bạn nhé

Minh Hiền
10 tháng 8 2016 lúc 13:19

A = -x2 + 6x - 10

= -(x2 - 6x + 10)

= -(x2 - 2.x.3 + 9 + 1)

= -(x2 - 2.x.3 + 32 +1)

= -[(x - 3)2 + 1]

Mà (x - 3)+ 1 \(\ge\)1

=> -[(x - 3)2 + 1] \(\le\)-1 \(< \)0

Vậy giá trị của A luôn âm với mọi giá trị của x.