cho tam giacs abc nhọn các đường cao bd và ce
CMR góc ABD = góc ACE
Cho tam giác ABC có 3 góc nhọn , các đường cao BD và CE cắt nhau tại H
a. CMR: tam giác ABD đồng dạng với tam giác ACE
b. CMR: HB.HD=HC.HE
c.Cm: GÓC ADE= GÓC ABC
vẽ hình
a xét tam giác ABD và tam giác ACE có :
chung góc BAC
góc BDA = góc CEA = 90 độ
=> tam giác ABD đồng dạng tam giác ACE (g.g)
b, xét tam giác EHB và tam giác DHC có
góc BDC = góc CFB = 90 độ
góc BHF = góc DHC ( đối đỉnh )
=> tam giác EHB đồng dạng với tam giác DHC (g.g)
=> \(\frac{HB}{HC}=\frac{HE}{HD}\)
=> HD . HB = HE . HC ( đpcm )
c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)
=> \(\frac{AB}{AC}=\frac{AD}{AE}\) => \(\frac{AE}{AC}=\frac{AD}{AB}\)
xét tam giác ADE và tam giác ABC có
chung góc BAC
\(\frac{AE}{AC}=\frac{AD}{AB}\)
=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c)
=> góc ADE = góc ABC ( đpcm)
cho tam giác ABC nhọn. Các đường cao BD và CE cắt nhau tai H.
a) tam giác ABD đồng dạng tam giác ACE
b) HB.HD= HC.HE
c) góc ADE= góc ABC
d) Trên các đoạn BD và CE lấy M và N sao cho góc AMC= góc ANB = 90 độ
mình làm được câu a, b, c rồi các bạn giúp mình câu d nhé thank
Bài 17. Cho tam giác ABC cân tại A (góc A nhọn), các đường cao BD, CE cắt nhau
tại H. Tia phân giác của góc ABD cắt CE và AC theo thứ tự tại M và P. Tia
phân giác của góc ACE cắt BD và AB theo thứ tự ở Q và N. BP cắt CN tại O.
Chứng minh
1. góc ABD = góc ACE (*)
2. BH = CH. (*)
3. Tam giác BOC là tam giác vuông cân.
4. MNP Q là hình vuông.
(*) GẤP Ạ 2 CÂU ĐÓ CŨNG OKK
1: ΔABD vuông tại D
=>\(\widehat{ABD}+\widehat{BAD}=90^0\)
=>\(\widehat{ABD}+\widehat{BAC}=90^0\left(1\right)\)
ΔACE vuông tại E
=>\(\widehat{ACE}+\widehat{CAE}=90^0\)
=>\(\widehat{ACE}+\widehat{BAC}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{ABD}=\widehat{ACE}\)(3)
2: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)
mà \(\widehat{ABD}=\widehat{ACE};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{DBC}=\widehat{ECB}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
=>HB=HC
3: BO là phân giác của góc ABD
=>\(\widehat{ABO}=\dfrac{1}{2}\cdot\widehat{ABD}\left(4\right)\)
CO là phân giác của góc ACE
=>\(\widehat{ACO}=\dfrac{1}{2}\cdot\widehat{ACE}\left(5\right)\)
Từ (3),(4),(5) suy ra \(\widehat{ABO}=\widehat{ACO}\)
\(\widehat{ABO}+\widehat{OBC}=\widehat{ABC}\)
\(\widehat{ACO}+\widehat{OCB}=\widehat{ACB}\)
mà \(\widehat{ABO}=\widehat{ACO};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
=>OB=OC
Cho tam giác ABC nhọn, các đường cao BD và CE .
a) chứng minh: tam giác ABD đồng dạng với tam giác ACE.
b) tính số đo góc AED biết góc ACB = 40 độ.
cho tam giác ABC có ba góc nhọn ( AB<AC) , vẽ các đường cao BD, CE .
a, chứng minh tam giác ABD đồng dạng với tam giác ACE .
b, góc ABC + góc EDC = 180 độ
giúp mk vs ak !! mk đg cần gấp!!!~
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc EDC+góc EBC=180 độ
Cho tam giác ABC nhọn, hai đường cao BD và CE (D=AC, E=AB). a) Chứng minh: tam giác ABD đồng dạng với tam giác ACE. b) Chứng minh: góc EDB bằng góc ECB
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc EDB=góc ECB
Cho tam giác ABC có ba góc nhọn, các đường cao BD, CE cắt nhau tại H.
a, CMR: tam giác ABD đồng dạng với tam giác ACE
b, CMR: BH.HD = CH.HE
c, CRM: góc ADE = góc ABC
d, Đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với AC tại C, cắt nhau tại M. O là trung điểm BC, I là trung điểm AM. So sánh Sahm và Siom
a) Có góc A chung và 2 góc vuông => ĐPCM
b) Xét EHB và DHC có:
2 góc vuông và 2 góc đối đỉnh EHB và DHC
=> EHB đồng dạng với DHC
=>BH/CH=EH/DH
=>BH.DH=EH.CH
c)Từ câu a ta suy ra được tỉ số : AB/AC=AD/AE
và có góc A chung .
Từ đó suy ra: ADE đồng dạng với ABC
=> góc ADE= góc ABC
d) Ta có IO là đường trung bình ( tự chứng minh )
=> IO//AH => AHM đồng dạng với IOM
Tỉ số cạnh = AM/IM =2 ( do là đường trung bình )
Tỉ số diện tích của AHM so với IOM là 22=4
Vậy SAHM=4.SIOM