Chứng minh rằng:
1) x - 5 > x - 10
2) x+3 > x - 2
3) x + 5 < x + 8
Chứng minh rằng:
1) x - 5 > x - 10
2) x + 3 > x - 2
3) x + 5 < x + 8
1) \(x-5=x-10+15>x-10\)
2) \(x+3=x-2+5>x-2\)
3) \(x+5< x+5+3=x+8\)
\(\Rightarrowđpcm\)
1 . chứng minh rằng : 30 mũ 5 x 7 - 6 mũ 5 x 5 mũ 3 x 25 x 4 chia hết cho 3
2 . chứng minh đẳng thức : 12 mũ 5 x 8 = 2 mũ 13 x 243
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
ai giải cụ thể giùm em với
Giải phương trình sau
a) x-5/100+x-4/101+x-3/102=x-100/5+x-101/4+x-102/3
b) 29-x/21+27-x/23+25-x/25+23-x/27+21-x/29=-5
ai giải cụ thể giùm em với
Giải phương trình sau
a) x-5/100+x-4/101+x-3/102=x-100/5+x-101/4+x-102/3
b) 29-x/21+27-x/23+25-x/25+23-x/27+21-x/29=-5
a, <=> (x-5/100) -1 +(x-4/101) -1 +(x-3/102) -1= (x-100/5) -1+(x-101/4) -1 +(x-102/3) -1
<=> (x-105)(1/100 +1/101 +1/102)= (x-105)(1/5+1/4+1/3)
<=> (x-105)(1/100+1/101+1/102-1/5-1/4-1/3)=0
vì 1/100+1/101+1/102-1/5-1/4-1/3 khác 0 <=> x-105=0
<=> x=105
b, 29-x/21 +1+27-x/23 +1+25-x/25 +1+23-x/27 +1+21-x/29 +1=0
<=> 50-x/21 +50-x/23 +50-x/25 +50-x/27 +50-x/29=0
<=> (50-x)(1/21 +1/23 +1/25 +1/27 +1/29)=0
vì 1/21+1/23+1/25+1/27+1/29 lớn hơn 0
nên 50-x=0
<=> x=50
c. \(\dfrac{x-4}{5}+\dfrac{3x-2}{10}-x=\dfrac{2x-5}{3}-\dfrac{7x+2}{6}\)
d. \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)
e. \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)
f. \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
g. \(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=5\)
d: \(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8\)
\(\Leftrightarrow12x^2+16=12x^2-12x-8\)
=>-12x=24
hay x=-2
e: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(x-5\right)^2\)
\(\Leftrightarrow x^2+7x+10-12x+9=x^2-10x+25\)
=>-5x+19=-10x+25
=>5x=6
hay x=6/5
f: \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
=>x-105=0
hay x=105
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Giải phương trình
a,\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
b, \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
a) \(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)
\(\Leftrightarrow\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)
\(\Leftrightarrow\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)
\(\Leftrightarrow\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x=105\)
b) \(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=-5\)
\(\Leftrightarrow\left(\frac{29-x}{21}+1\right)+\left(\frac{27-x}{23}+1\right)+\left(\frac{25-x}{25}+1\right)+\left(\frac{23-x}{27}+1\right)+\left(\frac{21-x}{29}+1\right)=0\)
\(\Leftrightarrow\frac{50-x}{21}+\frac{50-x}{23}+\frac{50-x}{25}+\frac{50-x}{27}+\frac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\frac{1}{21}+\frac{1}{23}+\frac{1}{25}+\frac{1}{27}+\frac{1}{29}\right)=0\)
\(\Leftrightarrow x=50\)