cho tam giác ABC nhọn. H là trực tâm và đường cao BM, CN. I, K lần lượt là trung điểm của BC và AH. Chứng minh IK vuông góc với MN
Bài 4. Cho tam giác ABC nhọn có đường cao AD, BM ,CN a) Chứng minh: tam giác AMB đồng dạng tam giác ANC và AB.MN=AM.BC. b) Gọi I, K lần lượt là trung điểm. AH,BC. Chứng minh IK là trung trực của MN. c) Gọi E là giao điểm của MN và BC. Chứng minh NC là tia phân giác của góc MND và BD.CE=CD.BE
a: XétΔAMB vuông tại M và ΔANC vuông tại N có
góc A chung
Do đó: ΔAMB\(\sim\)ΔANC
b: Ta có: ΔANH vuông tại N
mà NI là đường trung tuyến
nên NI=AH/2(1)
Ta có: ΔAMH vuông tại M
mà MI là đường trung tuyến
nên MI=AH/2(2)
Từ (1) và (2) suy ra NI=MI(3)
Ta có: ΔNBC vuông tại N
mà NK là đường trung tuyến
nên NK=BC/2(4)
Ta có: ΔMBC vuông tại M
mà MK là đường trung tuyến
nên MK=BC/2(5)
Từ (4), (5) suy ra NK=MK(6)
Từ (3) và (6) suy ra IK là đường trung trực của MN
Cho tam giác ABC nhọn có AB < AC và đường cao BM, CN cắt nhau tại H. a) Chứng minh tam giác AHN đồng dạng tam giác CBN, từ đó suy ra AH.CN = BC.AN. b) Gọi I, K lần lượt là trung điểm của AH và BC. Đường thẳng vuông góc với AC tại C cắt IK tại E. Chứng minh IK // AE. c) Chứng minh IK là trung trực của MN d) Khi tam giác ABC có cạnh BC cố định, điểm A thay đổi nhưng sao cho tam giác ABC nhọn. Chứng minh BH.BM + CH.CN có giá trị không đổi.
Cho tam giác ABC nhọn,đường tròn tâm O,đường kính BC cắt 2 cạnh AB,AC lần lượt tại M và N.Gọi H là giao điểm của BN và CM
a)Chứng minh AH vuông góc với BC
b) Chứng minh MN<BC
c)Gọi I là trung điểm MN.Chứng minh OI vuông góc với MN
a: Xét (O) có
ΔBNC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét (O) có
ΔBMC nội tiếp đường tròn
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH\(\perp\)BC
Bài 1: Cho tam giác ABC nhọn nội tiếp (O;R). Các đường cao AD, BM, CN cắt nhau tại H. gọi K là trung điểm của AH.
a) Chứng minh: BNMC nội tiếp và là tâm đường tròn nội tiếp tam giác MNH.
b) Gọi L là điểm đối xứng của H qua BC. Chứng minh: AM.AC = AN.AB và điểm L thuộc dường tròn (O).
c) Gọi I là giao điểm của AH và AN. Chứng minh MB là tia phân giác góc NMD và IH.AD = AI.HD.
d) Chứng minh: I là trực tâm tam giác BKC.
giúp với!
a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)
Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)
(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)
b) Xét ΔAMN và ΔABC có:
\(\widehat{BAC}\)chung
\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)
Do đó ΔAMN ~ ΔABC
Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)
hay AM.AC=AN.AB
Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)
Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)
Suy ra tứ giác ANHM nội tiếp
Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)
Mà \(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)
\(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)
Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)
Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)
c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)
Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)
Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)
Do đó tứ giác HMCD nội tiếp
Suy ra \(\widehat{HMD}=\widehat{HCD}\)
Mà \(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)
Nên \(\widehat{HMD}=\widehat{HMN}\)
Vậy MH là phân giác \(\widehat{NMD}\)
Mà MH vuông góc AM (gt)
Nên AM là phân giác ngoài
Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)
hay IH.AD=AH.ID
a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)
→AFAD=AHAB→AF.AB=AH.AD
Tương tự AH.AD=AE.AC→AF.AB=AE.AC
b.Ta có :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o
→AEHF,AEDB,FHDB nội tiếp
→ˆHFE=ˆFAE=ˆHBD=ˆHFD
→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF
→HIHD=FIFD=AIAD
→IH.AD=AI.DH
tam giác abc nhọn các đường cao bm và cn cắt nha tại h i k lần lượt là trng điểm của bc và mn chúng minh góc bai bằng góc cak
1. Cho tam giác ABC nhọn, H là trực tâm. Trên BH lấy điểm M, trên CH lấy điểm N sao cho AM vuông góc vs CM, AN vuông góc với BN. Chứng minh tam giác AMN cân.
2.Cho tam giác ABC cân, đường cao AH. Kẻ HI,HK lầ lượt vuông góc với AB, AC tại I và K. Biết AB= 6cm, BC=10cm. Tính BI, HK và IK.
Câu 2: Cho tam giác nhọn ABC, các đường cao AE, BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a, Chứng minh: tam giác ABC đồng dạng tam giác EFC b, Qua C kẻ đường thẳng b song song với IK cắt AH, AB lần lượt tại N và D. Chứng minh: CN=DN; IH=KH c, Gọi G là giao của CH và AB. Chứng minh: \(\frac{AH}{HE}+\frac{BH}{HF}+\frac{HC}{HG}>6\)
Cho tam giác ABC nhọn. H là trực tâm của tam giác. Đường thẳng qua B vuông góc với AB cắt đường thẳng vuong góc với AC vẽ từ C ại D. Gọi M,N lần lượt là trung điểm của BC, AD. Chứng minh rằng AH//MN, AH=2MN
Cho tam giác ABC nhọn , M là trung điểm của BC, H là trực tâm . Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại I và K . Từ C kẻ đường thẳng song song với IK cắt AH tại N , AB tại D. Chứng minh: ND=NC